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ABSTRACT 

In this paper we study a variational inequality for a second order uniformly 
elliptic operator on a bounded domain, the solution of which is required to lie 
above a given obstacle and to assume assigned values on a part of the boundary 
of the domain. We are mainly concerned with the regularity of the solution in 
relation to the regularity of the data. 

This paper is concerned with a variational inequality for a linear second order 

uniformly elliptic operator A on a bounded domain f~ in R n, the solutions of 

which are required to assume assigned values only on a part of the boundary of 

the domain and to lie above a given obstacle. 

The existence and uniqueness of the solution of the variational inequality 

under consideration is established in Section 1. 

We show in Section 2 that, under very mild assumptions of smoothness on the 

domain fl and on the coefficients of the operator A, the solution of the variational 

inequality, with an obstacle belonging to some Hl'V(f~) N C°'~(~), p > n and very 

general data, is H61der continuous up to the boundary with an exponent 0 < A _-_ y 

(2 depending on p). 

It is shown in Section 3 that the solution of our variational inequality can be 

approximated by solutions of certain quasi-linear mixed boundary value problems 

associated with the given elliptic operator A. This procedure permits us to obtain 

further regularity results for the solution of this variational inequality. 

t During the preparation of the paper the authors were partially supported by the Italian 
Consiglio Nazionale delle Ricerche, the first as visiting professor at the Scuola Normale Superiore 
(Pisa) on deputation from the Tata Institute of Fundamental Research (Bombay) and the second 
through the Istituto per l'Elaborazione dell'Informazione (Pisa). 
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We note that the results of Peetre [16], Shamir [17] and others show that, 

however smooth the data, the domain and the coefficients of A may be, the 

solution of the mixed boundary value problem has an optimal regularity beyond 

which one cannot expect any smoothness unless some additional compatibility 

conditions are imposed. In connection with our variational inequality, higher 

regularity is impeded not only by this fact but also because we are not dealing 

with equations. 

The concluding Section 4 is devoted to a formal interpretation of the boundary 

conditions imposed by the variational inequality. Also indicated are some extensions 

of our results to the corresponding questions associated with operators containing 

lower order terms and with inhomogeneous boundary values. Moreover, we also 

show that the problems in which the obstacle is defined only on the boundary as 

considered by Da Veiga [23] and Brfzis [2], can be fitted into the framework of 

this paper by making use of an idea of Kinderlehrer [5]. 

I. Notations and statement of the problems 

Let f2 be a bounded connected open set in the n-dimensional real Euclidean 

space R n, ~ its closure and ~3f~ its boundary. We shall consider only real valued 

measurable functions and we shall use the following standard notation. 

C~((~), 0 < k < 0% denotes the space of all k-times continuously differentiable 

functions on ~ and Cok(~) its subspace consisting of all functions with compact 

support in ~, C°'~(~), 0 < ct < 1, the space of all H/51der continuous functions 

on ~ having Htilder exponent ~. In a coordinate system (xl, "", x,), at a generic 

point x of ~, the partial derivatives Ou/Oxj of a function u in C l(fi) will be denoted 

by uxj and its gradient (ux,, "", ux.) by ux. In the sequel, we shall use the summation 

convention that the sum is to be understood whenever an index appears repeated. 

We define also the scalar function 

( )' lust-- 
We denote, for any p > 1, the norm of a function u in LP(E) by I! u or 

simply by II u II, when the domain of integration E is clear from the context. 

We consider on the space Cl(fi) the norm 

(1.1) I1.11,.-= ul[. o ÷ Ilu l/ ,o J 

HI'P(f~) denotes the Sobolev space of all distributions on t) obtained by the 
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completion of Cl(~) with respect to the norm (1.1). This is a Banach space 

(reflexive for 1 < p < oo). For  p = 2 it is a Hilbert space, denoted simply by 

H~(f~), provided with the natural scalar product 

(1.2) (u, v)l~2 = (u, v)Lz(n) + (Uxj, Vxj)L2(n). 

Here lluxll,,  is the norm in LP(f~) of  the scalar function l uxl For  

u e H i P(f~), Uxj and Ux still denote the derivative and the gradient in the sense of  

distributions. 

If  f~ satisfies a cone condition, then the following well-known Sobolev lemma 

holds: Every u s Hl'P(f~) for 1 < p < n belongs to LP'(~) where p , - 1  = p-1  _ n-1 

and there exists a constant C > 0 such that 

(1.3) I1 u lip. -<-- c II u 11,,  for all u s HI'P(f~). 

We shall constantly make use of the following notions. 

I f  E is any subset of ~'~, we say that a distribution u s H la,(f~) vanishes on E if 

there exists a sequence uv~C~(ff~) such that u , =  0 on E and u , ~ u  in 

Hl'~(f2). We say that u > 0 on E if there exists a sequence u, ~ C1(t2) such that 

u~ > 0 on E and u~ ~ u in HIP(fl).  

In the following, we shall denote by I EI the n-dimensional and by rE] the 

(n - 1)-dimensional Hausdorff measure of the set E. 

We shall denote by Hz'P(f~) the space of all functions whose first derivatives 

belong to H i P(f~). 

Suppose now that d~f~ and d2f~ are two disjoint open subsets of the boundary 

df~ such that 0~ = di l l  u ~zf~. 

We shall denote by V the subspace of Hl(f~) consisting of all distributions 

u ~ H~(f2) such that u = 0 on a~f~ (in the sense defined above). The space V provid- 

ed with the norm induced from that of  Hl(f~), being a closed subspace, becomes a 

Hilbert space. We note first of all that C~(f~) c3 V is dense in V. 

If  alf~ is locally Lipschitz, then we can define the trace of a distribution u in 

H1 P(f~) on dif~ and, by a well-known result concerning Sobolev spaces, this trace 

belongs to L~(Olf~) where s = p(n - 1)/(n - p). It is then clear that V is precisely 

the space of all u in H~(f~) whose trace on d ~  is zero. 

In the following, we shall assume that f~ and d l~  are such that the following 

Poincar6 type inequality holds for all u ~ V: There exists a constant C = C(f~, diD) 

> 0 such that 

(1.4) II ', II=,,, -<- c II u,, II =,,. 



Vol. 13, 1972 A VARIATIONAL INEQUALITY 191 

Under this assumption, we can take on V the equivalent norm defined by 

(1.5) l[ u [Iv = [] ux l[2.a" 

A sufficient condition for inequality (1.4) to hold for all u in V can be described 

as follows (see, for instance, [20]): For a point x fixed in R", any point y e R n can 

be represented in polar coordinates with origin at x as y = x + re where 

r=lx--y I and 1¢1 =1. 
For any x ~ f~, let Z(x) denote the set of points ~ of the unit sphere such that if 

y = x + r~ ~ 01fl then the segment {x + try; 0 < t < 1} joining x to y lies entirely 

in fL Denote by [E(x)] the (n - 1)-dimensional measure of Z(x). 

Assumption A. We require that there exist a constant /~o > 0 such that 

[E(x)] > Po for all x ~ fL 

Assumption A'. f~ and 01f~ are the images under a bi-Lipschitz mapping of 

some f~' and O~f~' which satisfy the assumption A. 

We denote, for any y E R n, the ball of centre y and radius p by I(y, p) and by 

S(y, p) = OI(y, p) the sphere of centre y and radius p. We set 

f~(y, p) = • n I(y, p), f~(y, p) = ~ ~ l(y, p). 

It will be convenient to introduce the following 

DEFINmON. Let A be a bounded open set in R" and fl > 0 be a constant. 

~-(fl, A) denotes the family of all subsets B of .4 such that the following inequality 

holds for all u ~ C1(.4) vanishing on B 

where 

1 / q * = l / q - 1 / n  for all l < q < n .  

We shall require that f~ satisfies a mild assumption of admissibility described 

below. 

Assumption B. (0) For all y e 0F~ we have 

lim inf l f~(y' p)] > 0. 
o-.o I l(y, P) I 

There exist a constant fl > 0 and, for all y ~ Off, a if(y) > 0 such that 

(i) for all y e 01I'~ and 0 < p < p(y), 

n n S(y, p) ~ ~(fl, n(y, p)); 



192 M.K.V.  MUR.THY AND G. STAMPACCHIA Israel J. Math., 

(ii) for all y e 02f~ and 0 < p < ~(y), every subset E of  ~(y,p)  such that 

I E I > ½ ] ~'l(y, p) [ belongs to the family ~(f l ,  f~(y, p)). 

Sufficient conditions for the validity of the Assumption B can be found in 

Stampacchia [19]. 

We consider on ~ a linear uniformly elliptic second order differential operator 

of the form 

(1.6) Au = - ~X----~ ( a.ik(X )Ux j) 

where the coefficients a~k are bounded measurable functions defined on 

satisfying 

(1.7) ml¢lZ<ajk(X)~iCk<M]¢] 2, for all ~ e R "  and a.e in fi, 

with some constant of ellipticity m > 0. We shall write 

(1.8) a(u, v) = fta ajk(X)Uxj(X)Vx"(x)dx" 

Then it is clear that there exists a constant C > 0 such that 

(1.9) [a(u,v)[ <= c liu IIv II vii,, for all u, v 6  V, 

and hence A maps V continuously into its dual space V'. 

On the other hand, under the Assumption A or A' made on f~ and dlf~, it 

follows, by the uniform ellipticity of A, that a(u, v) is coercive on V; that is, there 

exists a constant c > 0 such that 

(1.10) a (u ,u )>c  Ilull , for all ueV .  

Now suppose that 0 (referred to as the obstacle) is a given function in H~(f~) 

such that 0 N 0 on 0 ~  (in the sense defined earlier). 

Let us set 

(1.11) K = { u z V ;  u>=ff in f~} = {uEV;  u - - ~ k > O  in f~}. 

It  is clear that K is a closed convex subset of V. 

Let T E V' be given. We shall be concerned with the variational inequality 

(1.12) u ¢  K; a(u,v - u) > (T ,v  - u>, for all v¢ K, 

where ( , )  denotes the pairing between V and V'. 

Since the bilinear form a(u, v) is continuous (in the sense that it satisfies (1.9)) and 

coercive, it follows by a well-known result on existence of  solutions of  variational 
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inequalities (see, for instance, Lions and Stampacchia [11]), that there exists a 

unique solution u E K of the variational inequality (1.12). 

For the sake of simplicity all the calculations will be carried out assuming that 

n > 2. However, all the results hold also for n = 2 with minor changes. 

We note that, when 02 ~') is Lipschitz, the functionals of the form 

(1.13) (T,v> = (  (fov+fjvxl)dx + f  gvda, for all v~V, 
,/a d O2~ 

belong to V' provided that 

~foeL'(~2), r> 2n/(n+ 2); fisLP(~2), p> 2, f o r j =  i ,-- . ,n;  
(1.14) 

1 
LgsI2(Oz~), q >= 2(n - 1)In 

(da denotes the ( n -  1)-dimensional volume element on 02f~). This follows 

immediately on applying HNder's inequality together with the Sobolev inequality 

for v in V and the fact that v in V admits a trace on Oz ~ which belongs to L~(O2D). 

Let us remark that when a l~  does not satisfy (1.4), the coerciveness of a(u, v) 
fails and the problem becomes only semi-coercive in the sense of Lions and 

Stampacchia, i.e., a(v,v)> c[] Vxl[2za and l[ vxl]2., is no longer a norm on 

V = Hl(f~). A sufficient condition in order that the solution still exist is that 

fnfodx + f gda <O. 
d Ozt~ 

For details we refer to Lions and Stampacchia [11, § 6]. 

In the remain:ler of the paper, we shall be interested in the properties of the 

solution of the variational inequality (1.12) and in the possibility of regularizing it. 

2. Hiilder continuity of the solution 

This section is concerned with first theorems of regularity for solutions of the 

variational inequality (1.12). In the first part, we prove certain a priori global 

estimates which give the boundedness of the solution. We then derive local a 

priori estimates which we use to prove that the solution is H/51der continuous up 

to the boundary provided that the functional T on the right hand side of the 

variational inequality (1.12) is defined by functionsf o,./'1, "",f,  and g belonging to 

suitable LV-spaces, and that the obstacle ¢ is in some H l'J'(f 0. 

We begin with the global estimates. The method of proof is analogous to that 

used in Stampacchia [21], Murthy and Stampaechia [15] and Da Veiga [23] and 

so we limit ourselves to indicate only the salient points. 
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We assume that 02f~ admits (locally) a Lipschitz representation and that, 

besides the previous assumptions, the obstacle ~ is bounded in f with ~ < 0 on 

Let u be the solution of the variational inequality (1.12) and p > 2. 

Let ko = max (maxn~k, 0). For any real number k > ko let v = min (u, k) which 

is clearly in the convex set K. If  A(k) denotes the set {x e f t ;  u(x) > k} then, since 

v -  u vanishes in f - A ( k ) ,  we obtain on substituting this v in the variational 

inequality (1.12) 

fa(k)a.i, uxj ux, dx_< fa(kX f°(u-k)+ fiu~j)dx+ fa(k)c,o~a g(u-k)dtr. 

The right hand side here can be estimated from above using HNder's inequality 

together with Sobolev's inequality. The left hand side can be estimated from below, 

first by using the ellipticity of A and then on applying Sobolev's inequality in both 

the following forms. 

There exists a constant C > 0 such that 

I1¢ I1~'°---- c II ell,, for ( e V with 1/2" = ½ - 1/n 

and 

Setting 

we obtain 

where 

and 

Ilclls,o2,~ C I1¢1I" for ~ e g  with s=2(n-1)(n-2)  -x. 

It(k) = [ A(k)[ + [A(k) N O2f~ ] 2./, 

p(h) <= C(h - k) -2"  /~(k) a for all h > k > ko 

12 2 c =  c',lro,l.,2  + z IlfJllN. + Ilgll.2.  2.,2 
J 

fl = min ((1 - 2/p)2*/2, (1 - 1/s - 1/q)s}. 

We observe that if p > n and q > n - 1, then fl > 1. Using an algebraic lemma 

which can be found in [21] (for the non-negative function # defined on h > ko), 
we find that 

~(ko + d) = 0 

where 
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d 2. _-< C [#(ko)] a- 1. 

This argument proves the following 

THEOrtEM 2.1. I fu  ~ K is the solution of the variational inequality (1.12) where 

~ ~ L~°(9~) ~ H~(O) with ~k < 0 on 01~, 

fo ~ Lp/2(~), fJ ~ LP(f~) for j = 1,..., n with p > n, 

and g c Lq(c92f~) with q > n - 1, 

then we have 

{Fo [I s O(x) < u(x) < max (max O, 0) + p]2 1"1 "l- 
f~ 

almost everywhere in ~.  

The same tools can also be used to prove 

THEOREM 2.2 I f  u EK is a solution 

2 / . x IIs  F o + I1 g 11.02o 
J 

of the variational inequality with 

~EHI(f t )~L°°( f~) ,  fo~Lp/2(~), f i~LP(~), g~Lq(Ozf~).]'or j = I , . . . , n  with 

2 < p < n and 2 ( n - 1 ) / n  < q < n - 1 ,  then uE K nLP'(f~) (1/p* = l / p - 1 / n ) .  

We now proceed to prove the HOlder continuity of  the solution u of (1.12) up 

to the boundary. The proof is based on a method essentially due to De Giorgi [4] 

for uniformly elliptic equations. This was later extended by Ladyzenkaja and 

Ural'-tceva [6], Morrey [13] and Stampacchia [19] to uniformly elliptic linear 

and non-linear equations and boundary value problems. Further extensions to 

degenerate elliptic equations are given by Murthy and Stampacchia [15] and to 

some types of variational inequalities by Da Veiga [23]. 

The method consists essentially of taking, for the test function v in the variational 

inequality (1.12), a function obtained by suitably truncating u and then localizing 

it. 
We assume in the rest of this section that the assumptions A (or A') and B hold 

and that c92f~ admits (locally) a Lipschitz representation. Let 

f f o  ~ Lp/2(~), f j  ~ LP(f~) (J = 1, ..., n) with p > n; 
(2.1) 

! 
t . 9  ~ U(Oa~q) with q > n - 1. 

Moreover, the obstacle ~ is assumed to be in HLr(f~) n C o ~(~), for some 0 < 7 < 1 

and the same p, with ~b __< 0 on O~fL 

We, first of all, obtain a local a priori estimate for u in the following. 

Let u ~ K be the solution of the variational inequality (1.12) and xo e ~ .  If 
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Xo e 0~, then there exists a po(Xo) = Po > 0 given by the Assumption B. I f  Xo e D, 

there exists a po(Xo) > 0 such that I(xo, po(Xo)) c g~. 
In the following, we distinguish two cases; namely, (i) XoE01D and (ii) 

Xo e ~ u 02~. If  Xo s Q u 0zQ we may, without loss of generality, suppose that 

po(Xo) = Po is such that I(xo, Po)n01Q = ~ .  (We can always assume that 

0 < p o <  1). 

Let p and R be two real numbers such that 0 < p  < R <po(Xo) and let 

~ C~(I(xo, Po)) be a function such that 

~ 0 < ~(x) < 1, ~(x) = ~ 1 in I(xo, p) and 
/ 

(2.2) ( 0 outside l(xo, R) 
k ]¢x(x) l =< const. (R - p) - l .  

We also set, eventually reducing Po, 

ko=  ko(Po) = max(_sup ( -  ~),0); 
(2.3) n(~,o,po) 

Io = lo(Po) = min(_ inf ( -  @), 0) _> 0. 
fl(xo,po) 

For  any real number k > 0 we consider the two functions v, v' e H~(~) defined by 

the relations 

(2.4) v = u - ~2 max (u - ¢ - k, 0), v' = u - ~2 min (u - @ - k, 0). 

It can now be easily verified that we have 

(i) if Xo e 01g~, then v e K for all k >/Co and v' e K for all 0 _< k -< Io, 

(ii) if Xo e ~ w 0zQ, then v, v' e K for any k >= 0. 

Since Xo is fixed, we say in the following that a number k is admissible if the 

function v (resp. v') given by (2.4) belongs to K. 

We denote, for any 0 < t < Po, by A(k, t) and B(k, t) the sets defined respectively 

by 

(2.5) 

Then we have 

f - ~ 2 ( u  - ~ - k) in A(k, R);  

v - u  = ) [  0 otherwise 

A(k, t) = {x e fi(Xo, O; u(x) >= O(x) + k} 

B(k,O {xefi(xo, t); u(x) < ~,(x) + k}. 

~ -  ~2(u - ~ - k) in B(k, R) 

v ' - u =  [ 0 otherwise. 
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If k is admissible, then on substituting the function v~ K in the 

inequality (1.12) and adding the term 

a(k,Ra, J O~,[(2(U -- #S -- k)]x f lX  

to both sides, we find that 

aij ~2(u - 0)x,(U - 0)x, dx  
k.R)  

(2.6) 
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variational 

< f a  { ( f j -  aij O~,)~2(u - O)x, + ~(fo~ + 2(.,(fj  - aij0~,)) (u - ~ - k)} dx  
(k g) 

+ £(~.m~,o=9{2(u - ¢ - k )da .  

The left hand side here can immediately be estimated from below by using the 

eUipticity to get 

OL,dx. 
( , ) d A(k ,R)  

In order to estimate the right hand side of  (2.0, let us assume that 

A(k ,  Po) e ~ ( f l ,  D(Xo, Po)) so that ((u - ~ - k) ~ L2*(A(k, R)) and its norm is 

majorized by fill [((u - ~, - k)]x 112,A(k,R). 
Moreover, since ~2~'~ has a (local) Lipschitz representation, 

((u -- i~ - k) ~ U(A(k ,  R) ~ a2n ) 

and its norm is again majorized by II [~(u - ~, - k)]x ll~.a(k,R)- 

Hence, on applying H/51der's inequality to each term on the right side of (2.6), 

we obtain the estimate 

(k,R) 

+ 5:rlfo I: la(k, R)I:" + Isj I + I  ,xl:l dx 

where s' = 2(n - 1)/n. 

Since ~ = 1 in fi (Xo, p) c l(xo,  p) and taking into account (2.2) and Assumption 

B, we have thus proved 
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we have 

(a) fa(k 
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I f  u ~ K is a solution of the variational inequality (1.12), then 

I u- -k xr2 x oonst L lu- -kl  x 
p) (k R) 

+ JafC~R) [[f°[21A(k'g)[21" + Ej lf~l 2 + I~xl ~3 dx 

(i) for all k > ko > 0 if xo e Ol~ and 

(ii) for all k > 0 such that [ A(k, po)[ --< ½[ n(Xo, po) l g Xo ~ n w  o~n; 

(b) The same estimate holds with B(k,p) and B(k,R) in place of A(k,p) and 

A(k, R) 

(i) for all 0 <_ k <- l o when xo e 01f~ and 

(ii) for all k > 0 such that ]B(k, po)[ =< ½1 n(Xo, Po)[ when x o e t) w 02f~. 

Part (b) follows in the same way by taking v' ~ K in place of v in the above 

proof. 

We note that for x o ~ f~ ~d a2f~ either condition (a) (ii) or condition (b) (ii) of 

Theorem 2.3 always hoIds. 

We recall two lemrnas which will be used to derive a local boundedness estimate 

from the above theorem. 

LEMMA 2.4 Let f~ satisfy the Assumption B. Then there exists a constant 

e o > 0 such that for every v~ V, X o ~  and 0 < p < po(Xo), we have 

f f 1  dx 
d A  (k p) ,1A(k,p) 

d A(k .p)-A(h,p)  

where h > k 
- - 4  

(i) for every k > O if xo~ alf~ and 

(ii) for every k > 0 such that 

I A( k, p)[ ~ i1 n(Xo, p) l 
if x o ~ f~ k3 ~2f~. Similar inequalities hold with A(k, p) and A(h, p) replaced by 

B(k, p) and B(h, p) where 0 < h <_ k ,  

(i) for all k >-0 if Xoe~lf2 and 
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(ii) for  all k > 0 such that [ B(k, p)[ < ½1 f~(Xo, p)[ if  x o ~ f~ t.) OzfL 

LEMMA 2.5 Under the same assumptions as in the Lemma 2.4, there exists 

a constant cl > 0 such that 

[A(h,p)l  (2"-2)1" < cl(h - k)-ffA(~,o)lvxl2dx" { I A ( k , P ) ]  - ]A(h,p)l  } 

with the same restrictions for  k. A similar assertion holds also for  B(h,p) and 

B(k, p) in place of A(h, p) and A(k, p). 

These lemmas are consequences of the fact that if a function v vanishes in a set 

E c fl(xo, p) with I EI > ½ I~)(Xo, p) l (which is the case here for E = A(ko, p) or 

B(ko, p)), then E e,~-(fl, ~(Xo, p)) by Assumption B and so we can write Sobolev's 

inequality. For details of the proof, refer to Stampacchia [19]. 

For simplicity of writing we set 

a(k,e) =(Clrol:IA(k,R)l ~" + z Is~l ~ + l~,~l:}ax 
OA(k,R) j 

(2.7) 

The two lemmas above, together with the theorem 2.3, imply the 

THEOREM 2.6 Suppose u is a solution of the variational inequality (1.12) and 

f~ satisfies A (or A')  and B. 

(a) I f  Xo e 01f~ and 0 < p < R < po(Xo) then, for  all h > k > ko, we have the 

followin9 estimates: 

(i) f A ( h , p ( u - O - h ) 2 d x < c ° n s t "  {(R - p)- 2 f A(k.RXu-~-k)2dx +G(k,R) ) 
x IA(k,R)I2/"; 

d A(k,R) 

× { I A ( k , p ) l -  [A(h,p)[}. 
(b) The same estimates hold also for  x o e t ) u  02t) and for  all h > k > 0 

provided that 

[A(k, Po) I <-- ½l a(xo, po)I. 
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(c) Similar estimates hold with B(h,p) and B(k ,R)  in place of A(h,p)  and 

A(k ,R)  if 

(i) X o ~ 0 1 f ~ a n d h < k < l  oor  

(ii) Xo ~ f~ u 02 fl and 0 < h < k provided that 

I B(k, po)I _-_ i I  (Xo, p) I 
Since the data f o , f l , ' " , f ,  and # satisfy (2.1) and since ~k~Hl'"(t)) so that 

] ~kx I E LP(f~), we can estimate G(k, R) by HOlder's inequality and we find 

G(k,R) < Ilfol[~,21a(k,R)l'-"~+~'" + Y. (llfJll  ÷ ll~'xl[~)la(k,R)l ~-~'~+~'~ 
J 

(2.8) 
2Is' 

+ llgllq, o2.[a(k,g) n ~ ]  ~/''-~/q 
where the norms o f fo , f l ,  "", f ,  and Ox are taken over fL 

Let r be a real number such that 0 < r/2 < p < R < 2r < po(Xo). Then the 

estimates of Theorem 2.6 evidently hold with p replaced by r /2 and R by 2r. If  

we now set, for all 0 < p < Po and h > 0, 

a(h, p) = f (u - ~1 - h)2dx, 
da (h,a) 

,(h, p) = ] A(h, p) ] + [A(h, p) n ~n] ~ % 

then an iterativc procedure employed by Stampacchia in [19] and the estimate 

(2.8) for G(k, R) show that 

(2.9) #(ko + d/2, r/2) = 0 

where d > 0 is any number such that 

d 2 ~ const, r - " f  (u - t~ - ko)2dx 
d A (ko, 2r) 

(2.10, ÷ const. {[[[fol[p2/2 + ~ IIfj[]~+[]~px[]2 ]r2(1-~/p) 

2/st .2(1 --(n-- 1)/q) / 
"i" []~ q,02~" 

where the constants depend only on f), n, p, q but are independent of  r. 

In other words, we have the following estimate for the local boundedness of u' 

THEOREM 2.7 Suppose that ~ satisfies the assumption A (or A')  and B, and 

u ~ K be a solution of the variational inequality with f o , ' " , f ,  and g satisfying 

(2.1). 

(a) I f  xo e Ol~ and 0 < 2r < po(Xo), then there exists a constant C > 0 depen- 

ding only on ~,  n, p, q but independent of r such that 
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(2.11) 

where 

(2.12) 

A VARIATIONAL INEQUALITY 

I f  I }' sup ( u - O ) ( x ) < k o + C  r-" u - O - k o ] 2 d x + G r  2~ 
~(xo,r/2) I dA(ko,2r) 

201 

f 0 < ~ = min(1 - n/p, 1 - (n - 1)/q) < 1 and 

2/s' 
\ G = II:o lI, :2 + z It:, il, + II [I, + II, ..02°. 

(b) The estimate (2.11) remains valid for X o ~ U ~ 2 ~  with any ko>O 

provided that, for all 0 < p < po(Xo), 

IA(ko, P)] < ½] 9~(xo, p) I • 

(c) A similar estimate from below holds for infn(~o.,/z )(u - ~) (x) with l o in 

place of k o if Xo ~ Ol~. 

We also observe that, since u > ~, we always have 

inf ( u - ¢ ) ( x ) > 0  for x o ~ U O z ~ .  
~(xo,r/2) 

We are now in a position to prove that u is HNder continuous up to the bound- 

ary. For this purpose we define, for Xo ~ ~ and 0 < p < po(Xo), 

(-M(p) = sup ( u - ¢ ) ( x ) ,  re(p)= inf ( u - ~ ) ( x )  
fi(xo,t,) (2.13) ~ n(xo,o) 

L a n d  o~(p) = M(p) - re(p). 

Since u _>_ ~ in fl, it follows that M(p)~  re(p)>= 0 and, moreover, M(p) (and 

hence also re(p)) is finite by Theorem 2.1. For an integer N => 0 and 0 < 2r 

< Po(Xo), we set 

(2.14) KN = M(2r) - 2-(N+~)co(2r), LN = m(2r) + 2-(N+l)o)(2r). 

Then KN is an increasing sequence tending to K~ = M(2r) while Lu is decreasing 

tending to L~ = m(2r). It is clear that Ko = Lo = ½(M(2r) + m(2r)) and Ku > 0, 

L ~ > 0 .  

REMARK. 1. If  XO E fl U 02fl, then every KN (resp. every LN) is admissible for 

defining the test function v (resp. v') by (2.4). 

REMARK. 2. If  X0 ~ 0 ~ ,  every KN > ko = max (sup~(~o.p)(- ~), 0) [resp. every 

LN _--< lo = min (inf~(~o.o)(-- ~), 0) __> 0] is admissible for defining the test function 

v (resp. v') by (2.4). Thus there are three possible cases to be considered. 

(~) There is an integer No > 0 such that KN > ko for N >_- No. 
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(fl) There is an integer N O > 0 such that LN < lo for N > N o. 

(V) For every integer N we have l o < LN < Lo = Ko < K N < ko. 

REMARK 3. Suppose some KN (and hence also all the succeeding ones) is 

admissible for defining v in the sense that (~) holds. Then using Theorem 2.6 (iii), 

it is possible to prove that 

[A(Km 2r) I -~ 0 as K s  ~ K~o = M(2r). 

Thus if some K s  is admissible for defining v, then for sufficiently large N we may 

assume that 

and 

[ A(Ks'  201 < ½1 f~(Xo, 201 

Cr-"IA(KN,2r)I < ¼, 

where C is the constant of Theorem 2.7. A similar remark applies also for 

B(LN, 2r) if some Ls  is admissible for defining v' in the sense that (fl) holds. Then 

we are in a position to prove. 

THEOREM 2.8 Under the assumptions of the Theorem 2.7, there exist two 

constants 0 < r / <  1 and H > 0  (H depending only on the norms of 

fo , f l , ' " , f , ,  g, ~, n, p, q but independent of r) such that 

a~(r/2) < r/co(4r) + Hr ~ 

(0 < ~ < 1 is defined by = = min(1 - nip, 1 - (n - 1)/q)). 

PROOF. Let Xo e f~ t.) a2 t) and suppose that some K s  is admissible for defining 

v. Then by Remarks 1. and 3. above, there is an integer N o such that, for N > N o, 

we have 

[A(KN,2r)[ < ½ln(Xo,2r)l and Cr-"lA(Ks,2r)[ < ¼. 

We can then apply Theorem 2.7 (a) with ko replaced by K s  and we find 

M(r/2) N_ Ks  + C}[(M(Er) - KN)2r-"[ A(Ks, 2r)[ + Gr2"] ½ 

< K s  + ½ (M(2r) - KN) + C}G}r ~ 

= M(2r) - 2-(s+2)og(2r) + C~G~tr ~. 

Now since m(r/2) _>_ m(2r), we get 

co(r/2) < (1 - 2-(N+2))o)(2r) + ½G~r ~, 

which proves the assertion in this case. 
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Now let x o ~ Of t .  In case (~) of  Remark 2., the above p roo f  again works. 

Consider case (fl) of  Remark 2. Then, for  all N > No, we have 

I B(Lm 2r) I < ½1 fl(xo, 2r) ] and Cr-" I B(Lm 2r) I < ¼ 

and we can apply Theorem 2.7 (c) to obtain, as before,  

re(r /2)  >= L ~ - C  ~ r -~ ( u - ~ k - L N ) 2 d x + G r  2 
k JB(LN,2r) 

> LN -- ½ (LN -- m(2r)) -- C~G½r ~ 

because 

C~r -" f (u - ~ - LN)2dx 
do (LN 2r) 

203 

and hence 

Io - ko < a~(2r) < k o - I o. 

Since k o -  lo = sup~(xo,2r)(-- ~) - -  inffi(xo,2,)(-- ~b) = -- inf~(xo,2,)~ + supfi(xo,2,) ~b 

= osca(xo,2,) ~, we have 

o,(r) = o(osc ~). 
~(xo,2r) 

This completes the p roo f  of  the theorem. 

~_ C~r-'(LN _ m(2r)) 2 ]B(LN, 2 0  I 

_-< (¼)(LN -- m(2r)) 2. 

F r o m  this, exactly as above, we have 

m(r/2) > Ln - ½ x 2-(N+a)og(2r) - ½G~r ~ 

= m(2r) + 2-(n+2)~o(2r) - ½G~r ". 

Since M ( r / 2 ) <  m(2r) ,  we thus get 

co(r/2) = M(r/2)  - m(r/2) < co(2r) (1 - 2-(N + 2)) + ½ G~r , 

which again proves the required assertion. 

I f  x o ~ fl  t3 02f~ and some LN is admissible for  the definition of  v', the same 

arguments apply. 

Finally in case (7) of  Remark 2, we have 

Io=<LN=<KN=<ko for all N. 

Hence,  letting N ~ + 0% we find that 

l o = < m ( 2 r ) < k  o and l o__<m(2r )<k  o 
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Now by a standard technique it follows that there exist constants C > 0 and 

0 < 2 < 1 (2 < ~) such that 

co(r) __< Cr x for all 0 < r < po(Xo). 

This leads us to the principal result of this section which can be obtained by 

covering ~ with a finite number of sets of the form ~(Xo, po(Xo)) satisfying our 

requirements. 

THEOREM 2.9 Let ~ satisfy the Assumptions A (or A') and B. Suppose 

aij ~ L°~([2) and a(u, v) be V-coercive. I f  ~k ~ HI'P(~) ~ C°'r(~), fo ~ Lp/2(~), 

fjsLP(~), j = l , . . . , n  and flsLq(~2~), with p > n  and q > n - 1 ,  then any 

solution u ~ K of the variational inequality (1.12) belongs to V n C °'~ (~'1) where 

0 < ). < 1 depends only on f], t3f~, n, p, q and ~. 

3. Further regularity 

In this section, we show that the solution of the variational inequality (1.12) 

with f j  = 0 for j = 1,..., n can be approximated in C°'~(~) n V by solutions of 

certain quasi-linear mixed boundary value problems associated with the elliptic 

operator A. The techniques used are very similar to those used in [7]. 

The approximation procedure permits us to obtain further regularity of the 

solution of the variational inequality using the corresponding regularity for 

solutions of the mixed problems. The existence and regularity results for mixed 

boundary problems have been considered by several authors and one can refer 

to the articles of Peetre [-16] and Shamir [17] for a detailed bibliography. 

We begin by recalling some known facts concerning mixed boundary value 

problems for the linear elliptic operator A. Then we obtain an existence theorem 

for a quasi-linear mixed boundary value problem related to our variational 

inequality by using the standard method of monotone operators. 

We always suppose that the Assumption A (or A') holds and so a(u, v) is 

V-coercive. 

Assume that t3zf~ has a locally Lipschitz representation so that every element u 

in V has a trace on 02f~ which belongs to LS(a2f~) (s = 2(n - 1)/(n - 2)). Given 

two functions f~L' (~)  (see (1.14)) and fl ~ LS'(t32f]) (1/s + 1/s' = 1) we consider 

the problem of finding a solution 

V; a(u,v) = ~ f vdx  + ~ gvda, for all ve  V. (3.1) u 
dn 30 2f~ 
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We have already seen that the right hand side of (3.1) defines a continuous linear 

functional on V and hence, by the V-coerciveness of the bilinear form a(u, v), 

there exists a unique solution u ~ V of (3.1) (by the Lax-Milgram lemma). 

A solution u ~ V of problem (3.1) can be interpreted as a "generalized" solution 

of the mixed boundary value problem (see Section 4). 

(3.2) Au = f  in f~; u = 0 on 01f~ , (~ui~v)= 9 on 02fL 

REMARK. Under the Assumptions A (or A') and B, it is shown in Stampacchia 

[-19] (see also, Murthy and Stampacchia [15]) that the solution u e V of the mixed 

boundary value problem (3.1) is HOlder continuous up to the boundary provided 

that f e  LP(f~) with p > n/2, # e 12(02 ~) with q > n - 1, and that there exists a 

constant C > 0 and a number 0 < £ < 1 such that 

(3.3) II u I1,, + II ,, llco. < > _-< c {l l f l l , ,o + II 9 II,,o=o}. 
We shall now consider a non-linear mixed boundary value problem. 

Let f ~  LP(f~) with p > n/2 and # ~ L~(O2O) with q > n - 1 be given. We shall 

make the following assumptions on the obstacle t )~Hl( f~)wi th  t ) <  0 on 01f~ 

and on the coefficients of  A. 

Assumption C. In the sense of distributions, At) is a measure on f~ and 

c3t)/~3v is a measure on 02f~ such that 

max (At) - f ,  0) e LP(f~), p > n/2; max ((0t)/Or) - 9, 0) e L~(Q2f~), q > n - 1. 

The interior conormal 0~k/Ov is understood in the generalized sense. It  is clear 

that, if the coefficients of A are in Ca(~) and ~ ~ C2(f~) with ~ < 0 on 01~, the 

Assumption C is satisfied. 

We also note that, since n > 2, p > 2n/(n + 2) and q > s'. 

Let O(t) be a non-increasing Lipschitz function on the real line R I such that 

0 < O(t) < 1. Consider the non-linear mixed boundary value problem 

(3.4) { A 2 = m a x ( A t ) - f ' O ) O ( u - t ) ) +  f i n ~ '  
= 0 on 01~), Ou I~?v = max ((Ot)/~?v) - 9, O)O(u - t)) + 9 on  02~'). 

The variational formulation of the mixed problem (3.4) can be defined by 

means of  the quasi-linear form 

bo(u, v) = a(u, v) - _I, max (At) - f ,  O)O(u - t) ) vdx 

1 max ((Ot)/Ov) - 9, O)O(u - t)) vd~r, for u, v E V. 
do 2 t )  

The quasi-linear form bo(u, v) defines a non-linear operator B - Bo on V given by 
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(3.6) bo(u, v) = (Bu, v), for u, v e V. 

The operator B is strictly monotone and continuous from V into V'. The strict 

monotonicity depends on the facts that a(u, v) is V-coercive and that 0 is non- 

increasing so that 

[O(u - ~) - O(v - ¢)] (u - v) =< 0 for all u, v eV. 

The continuity of B is a consequence of the continuity of the bilinear form a(u, v) 

on V and of  an easy estimate of the two terms involving the integrals in (3.5) 

obtained by applying H61der's inequality together with Sobolev's inequalities. 

Moreover the quasi-linear form bo(u, v) is coercive in the sense that 

boCu, u)/l[ u llv-" + oo as l[ u 11,-  + oo. 

We now observe that the problem (3.4) is equivalent to the problem of finding a 

solution of 

u e V; bo(u, v) = f f vdx + f 9vda, for all ve  V. (3.7) 
dn do2f~ 

In view of this reduction, the general theory of  monotone operators yields the 

following existence theorem. 

THEOREM 3.1 Suppose F~ satisfies Assumption A (or A') and O2ff~ is locally 

Lipschitz. l f  f e LP(D) with p > 2n /(n + 2) and 9 e LQ(02 f2) with q > s' = 2(n - 1)/n, 

and ~ and the coefficients of A satisfy Assumption C, then there exists a unique 

solution u e V of the non-linear mixed boundary value problem (3.4). 

As another consequence of the above reduction of the problem (3.4), we can 

derive, from estimate (3.3) of the Remark and the fact that 0 < O(t) < 1, the 

following 

THEOREM 3.2 I f  Assumptions A (or A'), B and C hold with p > n/2 and 

q > n - 1, then the solution u of the non-linear mixed problem (3.4) belongs to 

C°'~(ff~) t3 V and we have 

II u llv + I[ u IlcO.X,~)< const. {1[ max(a@ - f ,  0)II p o  + l l f b °  

(3.8) + I[max((°~/8v)-g,°)llq.a2n + llallq,~2,} 

where the constant is independent of the function O(t). 

Hereafter we shall only be concerned with the variational inequality 

(3.9) u K; a(u,v-u) >= fof(v-u)dx g ( v - u ) d a f o r a l l  v e K  
2I't 
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where f ~  LP(fl) and g ~ Lq(a2 r )  with p > n/2, q > (n - 1). 

We shall show that the solution of the variational inequality (3.9) can be 

approximated from above as well as below by solutions of the mixed problems 

of the type (3.4) corresponding to sequences of functions 0(t) as described above. 

For similar results, see [7]. In the rest of this section, we shall use the notation 

(3.10) P(@,f) = max(A@ - f , 0 )  in g~, Q(@,g) = m a x ( ( & ~ / ~ v ) - g , O )  on az~q. 

We consider two sequences of functions of the type 0(t) defined as follows: 

(3.11) 

and 

f 1 , for t < - l / m  

O'(t)  = - rot, for - 1/m < t < 0 

0, for t > 0  

(3.12) 

i 1, for t < 0  

O'S(t)= - r o t + l ,  for 0 < t < l / m  

0, for t > 1/m. 

Then O'(t)  is a non-decreasing sequence of functions each of which is Lipschitz 

and non-increasing while O~,(t) is a non-increasing sequence of functions with 

the same properties. Both the sequences "converge" as m --+ ~ to the multi-valued 

function 0(t) defined by 

(3.13) 
f [  1 , in t < 0  

0( t )=  01] ,  at t = 0  

, in t > 0 .  

Notice that they satisfy the following properties. 

(1) O'S(t) = O'(t  - 1 /m) ,  

(2) O~(t) - 0"(0 < 0, for t - z > 1/m, 

(3) 0~(T) - O~(t) > O, for z < t. 

Relations (2) and (3) are immediate consequences of (1). 

Let us denote by u" and u,~, respectively, the solutions of the non-linear mixed 

boundary value problems defined by 0'm and 0~,. That is, denoting the quasi-linear 

form bo(u, v) corresponding to 0 = 0" and 0~, respectively by b ' (u ,  v) and b~,(u, v), 

we have 
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u m ~ V ;  b ' ( u ' , v )  = f f v d x  + f gvda, (3.14) for all veV, 
Jn Jo 2~ 

(3.15) u : , e V ;  b~,(U'm,V)= f f v d x  + f gvda, for all v e V •  
d n  Jo  2~ 

We know by Theorem (3.2) that Urn, Um e V n C°'x(~). Then we have the fol- 

lowing two propositions. 

PROPOSITION 3.3 The  sequence u' m satisfying (3.14) (resp. u#, satisfying (3.15)) 

is non-decreasing (resp. non-increasing). 

PROOF. If  ml < m2, then from (3.14) we obtain 

a(u" 2 - u~,,v) = f n  P(O,f)[O'2(u',,z - ~) - O ' , (u ' ,  - O)]vdx 

fo O' u' -~ Q ( O ,  g) [  m2( m2 - -  t]l) - -  Otm,(Utm, - -  ~l)]l)da. 
2f~ 

Here we can write 

O',z(u'~ - ~) - O ' , (u ' ,  - ~,) = O' (u' - - ' ' - - m z ,  m2 ifi) Omz(Uml i[J) 

+ O ' z ( u ' ,  - -  ~ )  - -  O ' m , ( U ' ,  - -  ~ )  

> o , .~ (u . .~  - O) - ' ' - O) , , Om2(Um ' 

since Omz(t) = Om~(t) for all t because mz > ml .  The same holds also in the boundary 

integral on 02t2 above• The function 

• I 

v = rain(urn2 --  Um,,O ) 

' > ' and as vanishes on the (relatively closed) subset E of ~ where urn2 = urn, 

a~I'~ c E, it follows that v belongs to V. Since v < 0 everywhere in ~ and since, on 

the subset ~ -  E, we have 

o ' ~ ( u ' 2  - ~ , )  - o ' 2 ( u ' ,  - O) >= o ,  

the above inequality implies that 

[Om2(Um 2 - O )  - -  ' t __ = ' ' Om, (Uml  I~)]I)  > O. 

Substituting this v ~ V, we see that 
! 

a(v,v) = a(u" z -  Uml,/) ) 

= I P(O, f )  [0"2(u'z - O) - 0",(u ' ,  - ~)] vdx 
S R  -E 

| Q(~, g)  [O',n~(U'm~ - -  O) - -  O ; , ( U ' ,  - -  0)] vd~ _ O. + 
z f~ -  E 
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Then by the coercitivity of  a(u, v), it follows that  v is a constant  in ~ .  But v -- 0 

on a~f~. Hence by the connectedness of  ~ ,  we see that  v = 0 in D. In part icular ,  

. . . . .  > ' i n ~  Um~ = urn, on the subset where Um~ < Um~ which is absurd.  Hence um~ = Urn, 

fo r  m 2 > m I. 

The p r o o f  of  the assert ion that  {u"} is non-increasing is completely  analogous  

and i f u ' ~ > u ' ,  at  some point  o f f l ,  it is enough to take for  v the funct ion v = 

max (u~,~ - u~,,,0) ~ V for  m I < m 2. 

This completes  the proof .  

The  same method  also yields the 

The  sequences {u '}  and {u"} respectively defined by (3.14) PROPOSITION 3.4  

and (3.15) satisfy 

(3.16) 

PROOF. 

0 <= u~ - u~, <= 1/m,  for  each m. 

We have, for  any  v E V, 

a(u'~ - u ' ,  v) = .In P(~k,f)  [O~,(u~, - ~b) - Ore(u" - ~b)] vdx 

f Q(¢, g) [O"(u~ - ~b) - O~(u" - ff)] vdtr. + 
3~ zfl 

Since u"  and u~, are cont inuous,  if u~, < u"  at some point  o f  f~ u t~2~'~ then there 

exists a relatively open subset co o f ~  where u~,(x) < u ' (x ) .  Let v = min (u~, - u~, 0). 

Then as before v e V, v < 0 and v = 0 in f~ u ~32f~ - co so that  

a(v, v) = f P ( ~ , f )  [O,~(u" - ~)  - O'(u" - ¢')] (u~, U~n)dx 
3~ NO 

a )  - ¢ , )  - - - u - )  + 

By the p roper ty  (3) o f  the functions 0~, and 0~, we have 

¢l t !  I l I t  I 

Om(U m - -  i f )  - -  Ore(Urn - -  ~k)  > = 0 since u m < U I  on co. 

Therefore  a(v, v) < 0 and, by the coercivity, v is a constant  in f~. Since v = 0 on 

it follows by the connectedness of  ~ ,  as in the above  proof ,  that  v = 0 everywhere;  
t t  ! t !  ! that  is, u m =Um on o9 which is absurd thus proving Um >-- Um for  each m. 

The  p r o o f  of  the assertion that  u~ - u"  < 1 /m is quite similar. It  is enough to 

take v = max(u~, - u~, - t / m , O ) e  V if u~ - u"  > 1 /m  at some point  and hence 

in some open subset o f  ~ as before, and to use the proper ty  (1) o f  the functions 

0~, and 0~,. This completes  the p r o o f  o f  the proposi t ion.  
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In view of Theorem (3.2), the two sequences {u'}, {u~,} form bounded sets in 
V n C °'z (~ )and  hence, in particular, have weakly convergent subsequences in 

V n C°'~(~). On the other hand, it follows by the above two pro positions that 

the sequences tend (weakly) to a common limit u in V n C°'z(~). 

Thus u ~ V n C°'~(~). 

It remains to prove that u is the unique solution of the variational inequality 

(3.9). 

For this purpose we consider the mixed boundary value problem (3.4) with 

0 = 0" defined by (3.11) and we denote the corresponding unique solution (whose 

existence is assured by Theorem (3.1)) by u ' .  Then we have 

THEOREM 3.5 I f  the Assumptions A (or A'), B and C hold, then the solution 

u" of the mixed problem (3.14) satisfies u" > ~ - 1/m. 

PROOF. Suppose, if possible, u'(x) < O(x) - 1/m at some point x s f~ u 02fL 

Then under the assumptions made, u" belongs to C°'Z(~) n V by Theorem (3.2). 

Hence there exists a non-empty open subset co of f~ u 02f~ where u" < ~k - 1/m. 

Then the function 

v = min (u" - ~ + 1/m, O) = " ~u" 
¢, + 1 /m in (2-) 

~0 in f~ u d2~ - co 

belongs to V since on 01fl we have u" = 0 and ~ _< O. Substituting v in the equation 

J ~ d a2~ 

we obtain 

a,u. v, . . x  + 

On the other hand, we also have 

a(tp, v) = i (A~)vdx + f,~ ( 0 ~  /Ov)vda 
J ~ n ~  c~02 

and so, on subtraction, 

= [ [P(~O,f)O'(u" - ~p) + f -  A4,] vdx a(u~ 4,, o) I 

do, nt~ 

+ f  [ Q ( 4 , , o ) 0 " ( u "  - ¢) + o - (04,/0v)] vda. 
~02 f l  

Since u ' - ~ k < - l l m  in o9 and O'(t)=l  in t < - l / m ,  it follows that 

a(u" - ~, v) < O, that is, a(v, v) < O. Hence by the V-coercitivity of the bilinear 
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form a(u, v), we find that v = constant on 09. But, since v = 0 at least at one point 

of  ~,  it follows that v = 0 in o2 by the connectedness of  f). This means that 
¢ t um = ~ k -  1 /m  in ~o which contradicts our assumption. Hence um> ~ k -  1/m 

everywhere in f~, which proves the required assertion. 

On the other hand, we have already seen that u"  form a bounded set in 

V n C°'a(f~) (by Theorem (3.2)). Hence, by weak compactness, a subsequence, 

again denoted by u ' ,  converges weakly in V n C°'a(~) and, moreover, uniformly 

to u. This means that u > ~ in ~,  that is, u ~ K. 

We are now in a position to prove the first main result of  this section. 

THEOREM 3.6 I f  the Assumpt ions  A (or A') ,  B and C are satisfied, then u is a 

solution of  the variational inequali ty (3.9). 

! PROOF. We have already shown above that u E K. I f  v ~ K, then v - u s ~ V 

for each m (in the subsequence). Since the quasi-linear form b ' (u ,  v) (corresponding 

to the function 0") is monotone and (hemi-) continuous it follows, on applying 

Minty 's  lemma (see for instance [22]), that 

- b , . (Um, v - u',.) b ' ( v , v  u ' )  >= ' ' 

= ' InP(¢, f )Om(Um ~[I)(V a(u,., v - u~) - ' ' - - u'm) dx  

f Q(¢, g)O'(u" - ~)(v - u')dcr i 

j a  2 f l 

= L f (v - u " )dx  + fd o2ng(v - u ' )da" 

Since v e K implies that v - ~ > 0 so that O'(v - ~k) = 0, we have 

P(¢ , f )O ' ( v  - ~,) = 0 in f~, O(~, g)O'(v - ~b) = 0 on e2f~, 

and hence 

a ( v ,  v - u : )  = b : ( v ,  v - u ' )  for v e K. 

We thus obtain the inequality 

a(v, v U lm) >= 
.] a J az~ 

Here since u"  ~ u weakly in V, we can pass to the limits on both sides and we find 

that 

f 
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In order to complete the proof of the theorem, it is sufficient to apply the lemma 

of Minty to the bilinear form a(u, v) to conclude from the above inequality that 

a ( u , v -  u) >__~ f ( v -  u)dx + I 9 ( v -  u)da, for a l i v e  K. 
dn J a2~ 

Theorems (3.5) and (3.6) provide a method of obtaining certain regularity 

results for the solution of the variational inequality (3.9) from the corresponding 

results for solutions of linear mixed boundary value problems. We examine some 

of these cases in the following. 

Consider for any F ~ LP(f~) with p > n/2 and G ~ Lq(d2f~) with q > n - 1 the 

mixed boundary value problem 

we V ; a(w,v) = f Vvdx + I Gvdtr, for all v~ V. (3.17) 
,/a d02fl 

It is known that the regularity of the solution w near a point x in ~ varies 

according as whether the point x under consideration belongs to one of the 

following sets: 
(=) f~ U axle, (fl) 02f~, (7) o~fl ~ 02f2. 

We make the following hypotheses which require suitable smoothness conditions 

on the domain f~ (respectively, subdomains of f~) and the coefficients of the 

operator A. In fact, we shall implicitly assume that the boundary Off and the 

coefficients ajk of the operator are sufficiently smooth in order that the a priori 

estimates that we recall below are valid for w. 

In order to state these a priori estimates, we shall require the fractionary Sobolev 

spaces Ws'P(I'~) and WS'P(Ozf~) for any real s. For details concerning the defi- 

nitions and properties of these spaces, we refer to the paper of Lions and Magenes 

[9] or to the paper of Shamir [17]. We shall denote the norm in the space 

W~'P(f~) by [1"11--,"" 
Further, in view of the imbedding theorem for fractionary Sobolev spaces, we 

know that (when 0zf~ is smooth) for 0 < s < 1, W ~'t (02f~) = L'(02f~) where 

( l / r )  = ( 1 / l ) - s / ( n -  1) and the inclusion mapping is continuous. Then by 

duality, the functions in /.,rt(a2~'~ ) ((1/r) + (1/r ')  =1) define continuous linear 

functionals on W"t(02f~), that is, define elements of W-~'t'(O2f~), (1/l) + (1/l ') = 1. 

We shall consider the subdomains fl', f~" of f~ which are of the form l) '  

= ~ t~ B', t)" = f~ t~ B" where B' and B" are open balls in R" with centre at x 

such that B ' c  B". 
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Starting with case (~) that x ~ fl u 81f~ by taking ~" such that ~"c~ u a~fl, 
we have the estimate 

(3.18) IlwJlz,e,n,+][wl[v<const. ~IIFL,°,+IIwlI,,o,,~. 
The a priori estimate (3.18) is a consequence of  the results due to Agmon, 

Douglis and Nirenberg [1] on elliptic boundary value problems. 

In case (fl), that is, for x ~ 02f~, by taking f2" such that ~" c t) t3 ~2~ we have 

the estimate 

(3.19) Ilwil,+(i/e),p,n,+ IlWHv < const. {1t F lip,n,, + II G Iiq,n,,~02n + II w lie,n,,}, 

where q < max (p, n - 1). 

The estimate (3.19) is a consequence of the results of Lions and Magenes [9] 

on inhomogeneous boundary value problems. 

In the remaining case (~) where x ~ 0~f~ (3 t?2f~ , we have the following estimate 

from the results of Shamir [17]. 

(3.20) 1} w lls,e,n" + II w ]Iv < const. <11 F Ileo + II a l}q.~,,n02f ~ "1- l] W lie,o,,) 

where 

(i) s =  1 for 1 < p < 4 ,  

(ii) s < (½) + (2/p) for any p > 4 

and q = p(n - 1)/n so that p > n implies that q > n - 1. 

We remark that in [17] art estimate of the type (3.20) is proved with 

[1 G [[_,/o,o,~,,~9~, in;tea:l of  1[ G I[q,~"~,0=n as stated here. However, making use of 

the remark made earlier about the fractionary Sobolev spaces, we can deduce 

(3.20) from the a priori estimate of Shamir in [17]. 

Assume that the domain f~ satisfiesAssumptions A (or A') and B. Let f e  Le(f~) 

with p > n/2 and g e U(02f~) with q > n - 1 be given. Suppose that the obstacle 

and the coefficients of  A satisfy the Assumption C. 

In order to derive the regularity of the solution of the variational inequality 

from the above estimates, we consider the sequence of Lipschitz functions 0~, 

defined by (3.11) and denote by um the solution of  the corresponding non-linear 

mixed problem (3.14) 

btm(Um, V)=Jf~ fvdx +fo~n erda, for all veV. 

Then umsW"e(~')n V for appropriate s,p,q according as the estimate 

(3.18), (3.19) or (3.20) holds and satisfies the following estimate. 
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Ilu.llv +  :llPc .f)ll,.o..+llfll,°.. 

On the other hand we know that H u,, II~,n" can be estimated by the other terms on 

the right side (see Murthy and Stampacchia [15]). From (3.18), (3.19) and (3.20), 

we conclude that u,, forms a bounded sequence in W~'P(~ ') t3 V for the appropriate 

s, p. So, by the weak relative compactness (of bounded sets), a subsequence, again 

denoted by u,,, converges weakly to a limit u in W~'~(f~')t3K But, by Theorems 

(3.5) and (3.6), this limit u is the solution of the variational inequality (3.9). Thus 

we have proved the following main result on the regularity of the solution of the 

variational inequality. 

THEOREM 3.7 Let ~ satisfy the Assumptions A (or A') and B. Suppose given 

feLP(~) with p > n / 2  and geLq(32f~) with q > n - 1  and suppose that the 

obstacle ~ and the coefficients of A satisfy Assumption C. I f  u ~ K is the solu- 

tion of the variational inequality (3.9) and if xef~k)01f~ (resp. x Ea2f~, 

X ~ ~1~'~ ('~ 02""--~), then u ~ H2'P(~r~ ') O V(resp. W 1 +O/P)'P(I)') ~ V, Ws'P(!) ') ~ V). 

As a consequence of the fact that we have assumed that the coefficients of the 

operator A and the domain fl (resp. subdomains of ~) are suitably smooth, 

Theorem 3.7 yields, in view of the Sobolev inequalities, the following 

COROLLARY 3.8 The solution u ~ K of the variational inequality (3.9) belongs to 

Cl'~(K)for any compact subset K of[-I such that K = ~ k3 alf~ with # = 1 - (h ip ) .  

Moreover, Theorem 2.9 can be strenghthened for p = q =  0% in the sense that u 

is in C°'a(K) with 0 < 2, < ½for any compact subset K o f ~  while 2 is any number 

less than 1 provided, in addition, that K N OiF2 ~ 632f2 = (~. 

4. Interpretation of the boundary data and some remarks 

In the first part of this section, we give an interpretation of the boundary 

conditions formally imposed by the variational inequality (3.9). In the rest of the 

section, we make a few remarks concerning extensions and generalizations of our 

results of the previous sections. 

I. We recall that the sequence of Lipschitz functions 0" defined by (3.11) 

"converge" to the multi-valued function 0 defined by (3.13). On the other hand, 

under Assumptions A (or A'), B and C, Theorems (3.5) and (3.6) show that the 

solutions u~, (a subsequence of u~,) of the non-linear mixed boundary value prob- 
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lems converge in V n C°'X(fi) to the solution of the variational inequality (3.9). 

Thus the variational inequality (3.9) can be formally described as follows: 

cAu - f ~ max ( A 0 - f , 0 )  0 (u - ~b) in t ) ,  

(4.1) J [u  = 0 on 01f~, Ou/Ov - g e max((OO ]Ov) - g, O)O(u - ~) on 02~'~. 

We observe that if o) is an open subset of  ~ where u > ~, then O(u - ~) = 0 and 

so u is a solution of the linear mixed boundary value problem 

~ Au = f in co n f~ (in the sense of distributions), 

(4.2) [u  = 0 on ~0 n 01f~, Ou/Or = g on ~0 n 02fL 

In order to interpret problem (3.1), we find, on taking v e C~(f~), that Au = f i n  f~ 

(in the sense of distributions). Let D(A) denote the subspace of V consisting of all 

u e V such that Au, taken in the sense of distributions, belong to L2(fl). (We note 

that if the coefficients of  A are functions in C~(~), then C2(~) n V is dense in 

D(A)). 

If  a2fl is of  class C t, then it admits a continuously varying tangent space at 

each of its points and a continuous normal vector field Vo oriented towards the 

interior of  ft. Then, for any u ~ C t ( ~ ) n  D(A), we obtain by applying Green's 

formula 

(4.3) 

where 

f (Au)vdx = a(u, v) - fo2n ~u --~v vd~ 

Ou 
(4.4) Ov = a]k (X)Vk(X)U~; 

H~re v~ (k = 1,. . . ,  n) denote the direction cosines of the interior normal Vo(X) at x 

on 02f~. Ou ~Or is called the co-normal derivative of u with respect to the operator A. 

Thus we see that if u s Cl(fi) n D(A), then 

(4.5) a(u'v)=fn fvdx + fo2n (Ou/Ov)v&r, for all ve  V. 

Now suppose that u ~ V is arbitrary and O2f~ is locally Lipschitz. Then Ou ]Ov 

can still be defined in a generalized sense as follows. 

Let  V(02f~) = V/Vo (Vo being the space of all functions v in V having its trace 

on 02f~ zero) be provided with the quotient norm. Then the mapping which 
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associates to every v ~ Vits trace v[ a2f~ is continuous linear from V onto V(02f~). 

On the other hand, the mapping L defined by 

Lv = (Au,  v) - a(u, v) 

defines a continuous linear functional on V which is zero on Vo and hence defines a 

continuous linear functional on the quotient space V(02~2). In other words, there 

exists a unique element G(u)~ [V(02fl)]', the dual space of V(02~)), such that 

(4.6) (G(u), v) = (au ,  v) - a(u, v). 

This can be considered as an extension of  Green's formula (4.5) above. By defi- 

nition we set 

(4.7) (Ou /Or) = G(u) on 02~. 

According to what we said at the beginning, we know that V(02~) =/2(02~) 

and the inclusion mapping is continuous so that every g s/2'(O2~)) defines a 

continuous linear functional on V(02~2). Moreover, we can then write 

v> = f ovd(r. (G(u), 
do 

That is, 

(4.8) (Ou ~Or) = g on 02~ in a "generalized sense". 

A d~taile:l azzoant of th~se facts can be found, for instance, in the book of 

Lions and Magenes ]10] or in the article of Magenes and Stampacchia [12]. 

These considerations lead us to the following formal interpretation of  the 

boundary conditions. 

1) I f  there exists an open subset E 1 of a2~ where u > ¢, then Ou ]Or = g on El.  

2) I f  u = ¢ and g - 0¢ JOy is a positive measure on a subset E2 of  02fl, then 

again Ou JOy = g on E2. 

3) I f  u = ~, and c~¢ ~Or - g is a positive measure on a subset E3 of  02f~ then, 

since 0 ~ 0(t) ~ 1, we have 

g <= ~u ~Or £ O~p JOy on E3. 

These inequalities are to be understood in a generalized sense. In order to make 

these more precise, we note that the notion "v > 0 on a subset E o f ~ "  for functions 

v ~ V induces a notion of  positivity on V(02~) which is the quotient space V/Vo. 

We recall that V(02~) is precisely the space of traces on 02~ of elements of  V. 
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Then for elements G in the dual space [V(02f~)]', we define positivity in a natural 

way as follows: For G ~ [V(02f~)]' and for a subset E of 02 ~ we say that "G _-> 0 

on E "  if G(v) > 0 for all v ~ V(02~) such that "v > 0 on E" .  

An analogous definition can also be given to the elements of [HX(02~)] ' 

= (Hl(~)/Vo)  '. We also observe that as V(02f~ ) c HX(02f~) with continuous 

inclusion, the elements of [H 1 (02f~)]' define elements of [V(02~)]' (by composition 

with this inclusion) and we identify these functionals. 

In view of this, the inequalities in (3) above are to be taken in the sense of 

functionals in [V(O2~'))] t, namely, 

(#u /By) - g >= 0 and (0~ ~Or) - (Ou /av) > 0 on E3 

as elements of [V(02£~)]'. 

Since [V(02~)]' is a normal space of distributions on 02 t) we see, by a well 

known theorem of Riesz-Schwartz, that the above inequalities can also be un- 

derstood in the sense of measures on 02fl; that is, (du/Ov) - g and (0¢ ~Or) - (Ou/Ov) 

are positive measures on Ea. 

II. The solution u of the variational inequality (3.9) can also be obtained by 

another approximation procedure of potential theoretic nature. Again here we 

essentially follow the treatment of Lewy and Stampacchia in [7]. 

Suppose u ~ K is the solution of the variational inequality (3.9). Let Ku denote 

the cone of all w ~ V which can be written in the form w = t(u - v) for some 

v ~ K and t > 0, and Ku be its closure in V. Then it is dear  that 

(4.9) a(u'w) >=fnfwdx + fo2n 9wdtr, for all w e I ( , .  

We next observe that the positive cone (w ~ V; w > 0 in ~} is contained in K, and 

in particular, (4.9) is satisfied. These considerations lead us to introduce, in 

analogy with the case of the Dirichlet problem (that is, 01fl = 0f2), the following 

DEFINITION. A distribution w ~ HX(t)) is said to be a super solution with respect 

to V, A , f  and 9 if 

> ~  f g(odtr, for all ~b~C~(~)with~b 0 o n  0~£~ a(w, (o) f q~dx + = 
.In .I 02f~ 

(4.10) and ~b > 0 in ~.  

Evidently in this definition, we can also take q~ ~ V with ~ >= 0 in ~. 

We have 



(4.11) 

then 

(4.12) 

PROOf. 
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THEOREM 4.1 I f  U e K is the solution of the variational inequality (3.9) and 

W denotes the set of all super-solutions with respect to V , A , f  and g such that 

w > O on ~1~ and w > tp in 

u = min {w; w e W}. 

Let w e W be arbitrary and let v = rain (u, w). Then v e K because o f  

(4.11) and we shall show that  o = u. Substituting v in the variational inequality 

we get 

a(u, v - u) f ( v  - u)dx + g(v u)da. 
2~ 

Since w is a super solution and v - u e V with v - u =< 0 in ~ ,  we have 

a(w,v - u) fo f(v - u)dx + f 2a # ( v -  u)dtr. 

We can write the left hand  side as 

a ( w , v -  u )=  ( I + I ta jkW~(V-  U)~flX 
',d (u=w) d(u>w)l 

where we have 

n - u = 0 and vx = ux on the set {x e f i ;  u(x) = w(x)} 

and v = w and vx = w~ on the set {x e f~; u(x) > w(x)}. Hence the first integral 

vanishes and 

(4.13) a ( v , v - u ) = a ( w , v - u )  <=f. f(v-u)dx + f 2. g(v-u)d,,. 
The inequalities (3.9) and (4.13) together imply that  a(v - u, v - u) <= 0 which by 

V-coercivity o f  the bilinear fo rm implies that v - u is a constant  in ft. As in the 

p r o o f  o f  Theorem (3.5), the connectedness o f  fi  shows that  v = u which proves 

the required assertion. 

REMARK. Since any ~b e V such that  ~ > 0 in ~ can always be written as v - u 

with v e K, we see that  the solution u e K o f  the variational inequality (3.9) is 

itself a super solution with respect to V, A, f and g. 

As a consequence o f  Theorem (4.1), we obtain 
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COROLLARY 4.2 Let g/1,tp2 be two obstacles such that ~1 > ~b2 and tpj < 0 on 

Oxf~. I f  Ul, U2 are the two solutions of the variational inequality (4.10) corre- 

sponding to the convex sets 

(4.14) Kj = {v ~ V, v ~ ~/j}, (j = 1, 2), 

then ut > u2. 

In fact, let Wj denote the two sets of super solutions with respect to V, F and A 

corresponding to Sj(j = 1, 2). Then W1 c I4'2 and by Theorem 4.1 we have 

u2 = m i n w <  m i n w = u s ,  
w e W 2  w e W l  

which proves the assertion. 

In conclusion we shall only mention that exactly as in Lewy and Stampacchia 

[8], one can prove the following assertions. 

a) Let ~/j be two (smooth) obstacles as in Corollary 4.2 and uj ~ Kj be the 

corresponding solutions of the variational inequality (3.9) (j = 1, 2). If  there 

exists a paint Xo ~ where ~kl(x0)> 0, then sup(u1 - u 2 )  lies on the set 

(x Eft; us(x) = ~(x)}.  

b) If  ~j and u~ ~ Kj are as above, then 

0 _~ U s - -  U 2 ~_~ sup(¢ 1 -- ~z)" 

c) If  ~O x and ~2 are two smooth obstacles such that ~Oj < 0 on 0~fZ and u s ~ K~, 

the corresponding solutions of the variational inequality, then 

[ux-uzl < s_up[@, - Czl. 
ft 

The following are some extensions of our results. 

(a) Inhomogeneous data on 01f2. Let u o and ~ be two functions belonging to 

Hi(f1) such that ~b < 0 on O~fL Consider the closed convex set K 0 in H~(f~) defined 

by 

(4.15) Ko = {v~HX(~); v -  u o e V  and v -  Uo> ~k in ~}. 

(Ko is contained in the hyper-plane V+  Uo in H~(f2)). Then all our results can be 

extended to the variational inequality 

u~  Ko; a(u, v - u) _~ ( ~fo(v - u) + f j(v - u),,j]dx + f 9(v - u)dcr, 
do 2f~ 

(4.16) for all v~ Ko, 
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with almost no change in the proofs by considering the convex set K = K o + u o. 

The variational inequality (4.16) formally corresponds to the mixed boundary 

value problem 

lAw = f o  - ( f j )x j  in f~ (in the sense of distributions) 
(4.17) 

~w = uo on Olf~, Ow/& = g on t?2~q. 

Operators with lower order terms. Consider a uniformly elliptic operator (b) 
of the form 

(4.18) 

where 

Au = - (ajkUxk "4- dju):,~ + bjuxj + cu 

"(i) ajk~L°°(~), bj, dj~L"+~(f~) and c~L"/2+*(f~) for some e > 0; 

(ii) there exist positive constants m, M such that 
(4.19) 

m]~l 2 Z a j k ~ j ~ k  <-~ MI I 2, a.e. in • and for all ~ R " -  {0}; 

. (iii) c-(dj)xj > Co > 0 on f~ in the sense of distributions (Co a constant). 

We define the associated bilinear form by 

(4.20) a(u, v) =~ ['(aikUx,, + dju)vxj + (biux j + cu)v]dx 
.) t l  

and assume that a(u, v) is V-coercive. Let ~, ~Hl(f2) with ~, < 0 on O,f~ and 

K = {v e V; v > ~ in f~) be the associated closed convex set of V. 

All the results of the previous sections easily extend with minor changes to the 

solutions of the variational inequality 

u m K; a(u,v-  u) >= f [ f 0 ( v -  u)+ f j ( v -  u)xs]dx + f 9(v u) dtr, 
da dO 2tl 

for all v ~ K. 

If  a(u, v) is only semi-coercive on V (in the sense of Lions and Stampacchia [-11-]), 

it is necessary to make the compatibility assumption that 

f n f ° d x + f o  9dtr<O'=~ 

For the techniques we have used in the proof of H/Jlder continuity as applied to 

this more general situation, we refer to the paper of Stampacchia [,,19] (see also 
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Murthy and Stampacchia [15]). Clearly the remark (a) on the inhomogeneous 

data on O~f~ applies also in this case. 

(c) Obstacles defined only on the boundary. Let the domain f~ satisfy the 

conditions A (or A') and B of Section 1. We shall further assume that f2 and the 

oefficients ajk of A are smooth in order that the inhomogeneous Dirichlet problem 

Aw = f  in Q, w = Wo on Of~, (4.21) 

that is, 
t "  

(4.21)' w - Wo ~ Hlo(f2), a(w, 71) = Jo fqdx, for all q Hl(f~) 

is solvable and w ~ H2'p(~) for any given f e  LP(~q) and w o ~ Hz'P(f2). 

This condition is satisfied, for instance, if ~1"2 is of class C 2 and ajk ~ C1(~) (see 

the paper of Agmon, Douglis and Nirenberg [1]). Under the assumption of 

smoothness of df~, the Dirichlet condition can equivalently be assigned in the 

appropriate space of distributions on ?f~ itself (see the paper of Lions and 

Magenes [9]). 

Let ~ be a distribution belonging to W2-(x/P)'P(Of~) such that ~ < 0 on O~f2, 

f~LP(f~) with p > n and let 9~Lq(O2f~) with q > n -  1. Let ~ ~H2'P(~) be the 

(unique) solution of the Dirichlet problem. 

(4.22) a ~  = f  in ~, ~ = ~b on 0f2. 

Consider the closed convex subsets of V defined by ~k and ~, namely, 

(4.23) K = { v ~ V ; v > O o n ~ } a n d K  = { v ~ V ; v > ~ i n £ 2 } .  

We observe that ~ satisfies Assumption C of Section 2 and, by Sobolev's inequality, 

belongs to C1"~(~)), 7 = 1 - n/p. Then we have the 

THEOREM 4.3 Under the above assumptions if u is the solution of the varia- 
tional inequality 

(4.24) u~ K; a ( u , v - u )  > I f ( v - u ) d x  + ~  g(v-u)&r,  for all v~ I(, 
,~ ~ J 02~ 

then u resolves the variational inequality 

u e K ; a ( u , v - u ) > ~  f ( v - u ) d x  + ~  g(v-u)dtT, for all v eK .  (4.25) 
dn 30 2fl 

PROOF. We note, first of all, that u e K in view of the inclusion K c K. It is 

therefore enough to show that (4.24) holds for all v e K so that (4.25) is satisfied. 



222 M . K . V .  MURTHY AND G. STAMPACCHIA Israel J. Math., 

If  v ~ K is any arbitrary element, then either v => ~ in f~ or v < ~ at some point 

in fl (and hence also in an open subset of f~ by the continuity of v - ~ given by 

Theorem (2.9)). In the first case, (4.24) is nothing but (4.25). So we have only to 

consider the case in which v < ~ at some point of ~. 

In this case, we can write v as a sum v = vl + v2 by defining 

(4.26) vl = max (v, ~) and v 2 = v - vl. 

Then vl ~ K and vz ~ V with 

{~ in { x ~ ;  v >  ~} 

vz = - ~  in { x ~ h ; v < ~ } .  

Since v ~ K by assumption so that v _>_ ~k = ~ on g~, it follows that suFp v 2 ~ f~ 

and thus v2 ~ Hol(f~) = V. We can now write 

a(u, v - u) = a(u, vl - u) + a(u, vz). (4.27) 

We shall show that 
f 

(4.28) a(u, v2) = .In f v2dx .  

In fact, by Theorems 3.5 and 3.6, u is the weak limit in V n  C°'x(~) of the 

sequence (a subsequence) u" which are solutions of  the mixed boundary value 

problems 

a(u ' ,  r/) = f n  [max (A~  - f ,  O)O'(u" - tp) + f]r ldx  Utm V; 

+ f (max ((O~b/Or) - 9, O)O'(u~, - ~,) + 9]rld~r, for all I/ V. 
do 2~ 

Here, since Aq~ = f  in ~ and since supp Vz c ~ we find that 

a(U'm, v2) = f n  f v z d x ,  

which on passage to the limit proves (4.28). 

Finally, since u is the solution of (4.24) and since v 1 ~ l~, we find from (4.27) that 

a(u,v  - u) f (v~ - u)dx + g(vl u)da + f v2dx .  



Vol. 13, 1972 A VARIATIONAL INEQUALITY 223 

In  view of  the fact that  supp vz ~ f~ implies that v = v~ on cW~, this inequality 

proves the required assertion. The method of  p r o o f  we have adopted  above  

follows an idea o f  Kinderlehrer I-5]. The remarks (a) and (b) can easily be extended 

to this situation. 

Theorem (4.3), in particular, together with our  results o f  Section 2 give the 

results o f  D a  Veiga 1-23] and Br6zis 1,2]. However,  the p r o o f  o f  D a  Veiga being 

direct does not  require the smoothness o f  df~ nor  that  o f  the coefficients as in- 

dicated here. 
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