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ABSTRACT

In this paper we study a variational inequality for a second order uniformly
elliptic operator on a bounded domain, the solution of which is required to lie
above a given obstacle and to assume assigned values on a part of the boundary
of the domain. We are mainly concerned with the regularity of the solution in
relation to the regularity of the data.

This paper is concerned with a variational inequality for a linear second order
uniformly elliptic operator A on a bounded domain Q in R", the solutions of
which are required to assume assigned values only on a part of the boundary of
the domain and to lie above a given obstacle.

The existence and uniqueness of the solution of the variational inequality
under consideration is established in Section 1.

We show in Section 2 that, under very mild assumptions of smoothness on the
domain Q and on the coefficients of the operator A, the solution of the variational
inequality, with an obstacle belonging to some H"?(Q) N C*'(Q), p > n and very
general data, is Holder continuous up to the boundary with an exponent0 < A <y
(4 depending on p).

It is shown in Section 3 that the solution of our variational inequality can be
approximated by solutions of certain quasi-linear mixed boundary value problems
associated with the given elliptic operator 4. This procedure permits us to obtain
further regularity results for the solution of this variational inequality.

t During the preparation of the paper the authors were partially supported by the Italian
Consiglio Nazionale delle Ricerche, the first as visiting professor at the Scuola Normale Superiore
(Pisa) on deputation from the Tata Institute of Fundamental Research (Bombay) and the second
through the Istituto per I’Elaborazione dell’Informazione (Pisa).
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We note that the results of Peetre [16], Shamir [17] and others show that,
however smooth the data, the domain and the coefficients of A may be, the
solution of the mixed boundary value problem has an optimal regularity beyond
which one cannot expect any smoothness unless some additional compatibility
conditions are imposed. In connection with our variational inequality, higher
regularity is impeded not only by this fact but also because we are not dealing
with equations.

The concluding Section 4 is devoted to a formal interpretation of the boundary
conditions imposed by the variational inequality. Also indicated are some extensions
of our results to the corresponding questions associated with operators containing
lower order terms and with inhomogeneous boundary values. Moreover, we also
show that the problems in which the obstacle is defined only on the boundary as
considered by Da Veiga [23] and Brézis [2], can be fitted into the framework of
this paper by making use of an idea of Kinderlehrer [5].

1. Notations and statement of the problems

Let Q be a bounded connected open set in the n-dimensional real Euclidean
space R, Q its closure and 0Q its boundary. We shall consider only real valued
measurable functions and we shall use the following standard notation.

C"(ﬁ), 0 < k £ oo, denotes the space of all k-times continuously differentiable
functions on Q and C:(ﬁ) its subspace consisting of all functions with compact
support in Q, C**(Q), 0 < a < 1, the space of all Hdlder continuous functions
on Q having Holder exponent «. In a coordinate system (xy, -, x,), at a generic
point x of Q, the partial derivatives u [0x; of a function u in C!(Q) will be denoted
by u,, and its gradient (u,,, -+, u,,) by us. In the sequel, we shall use the summation
convention that the sum is to be understood whenever an index appears repeated.
We define also the scalar function

%+
lu,| = ( Xz u,zcj) .
j

We denote, for any p = 1, the norm of a function u in I’(E) by [u],z or
simply by “ u ”p when the domain of integration E is clear from the context.
We consider on the space C(Q) the norm

%+
.1 s = (lulia+ = Jufia)-
J

H'?(Q) denotes the Sobolev space of all distributions on Q obtained by the
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completion of CY(Q) with respect to the norm (1.1). This is a Banach space
(reflexive for 1 < p < ). For p=2 it is a Hilbert space, denoted simply by
HYQ), provided with the natural scalar product

1.2) (4, 0)1,2 = (U, V) 2¢q) + (U, V5 D120
Here |u.|,q is the norm in I(Q) of the scalar function |u,| For
ueH *(Q), u, , and u, still denote the derivative and the gradient in the sense of
distributions.

If Q satisfies a cone condition, then the following well-known Sobolev lemma
holds: Every u e H"*(Q) for 1 < p < n belongs to I”*(Q) where p* ' = p~! — ™!
and there exists a constant C > O such that

(1.3) [

We shall constantly make use of the following notions.

» = C|uy, for all ue HP(Q).

If E is any subset of (, we say that a distribution u e H L-2(Q) vanishes on E if
there exists a sequence u,€C!(Q) such that u,=0 on E and u,—u in
H"“?(Q). We say that u = 0 on E if there exists a sequence u, e C}(Q) such that
u,200n Eand u,~uin H?(Q).

In the following, we shall denote by |E| the n-dimensional and by [E] the
(n — 1)-dimensional Hausdorff measure of the set E.

We shall denote by H*?(Q) the space of all functions whose first derivatives
belong to H' 7(Q).

Suppose now that 9,Q and 9,Q are two disjoint open subsets of the boundary
Q such that 8Q = §,Q U 8,Q.

We shall denote by V the subspace of H(Q) consisting of all distributions
u € H(Q) such that ¥ = 0 on 9,Q (in the sense defined above). The space V provid-
ed with the norm induced from that of H'(Q), being a closed subspace, becomes a
Hilbert space. We note first of all that C}(Q) NV is dense in V.

If 3,Q is locally Lipschitz, then we can define the trace of a distribution u in
H'?(Q) on 9,Q and, by a well-known result concerning Sobolev spaces, this trace
belongs to L(0,Q) where s = p(n — 1) /(n — p). It is then clear that V is precisely
the space of all u in H!(Q) whose trace on 9,Q is zero.

In the following, we shall assume that Q and 6,Q are such that the following
Poincaré type inequality holds for all u € V': There exists a constant C = C(£, 6,Q)
> 0 such that

(1.4) |#]20=C |us]2a-
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Under this assumption, we can take on V the equivalent norm defined by

(L.5) [ully = lus]20

A sufficient condition for inequality (1.4) to hold for all 4 in V can be described
as follows (see, for instance, [20]): For a point x fixed in R", any point y € R" can
be represented in polar coordinates with origin at x as y = x4+ rfé where
r=|x—y| and |é]=1.

For any x € Q, let £(x) denote the set of points £ of the unit sphere such that if
y = x + r € 3;Q then the segment {x + tr; 0 <t < 1} joining x to y lies entirely
in Q. Denote by [Z(x)] the (n — 1)-dimensional measure of Z(x).

Assumption A. We require that there exist a constant g, >0 such that
[Z(x)] > po for all xeQ.

Assumption A’. Q and 0,Q are the images under a bi-Lipschitz mapping of
some ' and 0,Q’ which satisfy the assumption A,

We denote, for any y € R", the ball of centre y and radius p by I(y, p) and by
S(y, p) = 0I(y, p) the sphere of centre y and radius p. We set

Qy, p) = 2 NIy, p), Ay,p) = A NIy, p).
It will be convenient to introduce the following

DEeFINITION. Let A be a bounded open set in R” and 8> 0 be a constant.
& (B, A) denotes the family of all subsets B of 4 such that the following inequality
holds for all u e C(A4) vanishing on B

H Uiigna S B “ Ux “M

where
1/g*=1/g—1/n for all 1 <g =< n.

We shall require that Q satisfies a mild assumption of admissibility described
below.

Assumption B. (0) For all y € 6Q we have

lim inf 2022
p-0 ll(y,P)l

There exist a constant § > 0 and, for all y €09, a p(y) > 0 such that

> 0.

(i) forall yed,Qand 0 < p < p(y),

Q NS(y, p) e F(B, 2y, p));
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(i) for all yed,Q and 0 < p < p(y), every subset E of Q(y,p) such that
|E| > |9y, p) | belongs to the family F(8,Q(y, p)).

Sufficient conditions for the validity of the Assumption B can be found in
Stampacchia [19].

We consider on Q a linear uniformly elliptic second order differential operator
of the form

]
(1.6) Au = — a;(ajk(x)”x,)

where the coefficients ay are bounded measurable functions defined on Q
satisfying

(1.7 m| &2 < au(x) & S M|E[2, for all £eR” and ae in O,

with some constant of ellipticity m > 0. We shall write

(1.8) a(u,v) = J;l ap(X)uy ()0, (x)dx.

Then it is clear that there exists a constant C > 0 such that
(1.9) la@,v)| £ C |u]y | o], for all u,veV,

and hence A maps V continuously into its dual space V'.

On the other hand, under the Assumption A or A’ made on Q and 0,Q, it
follows, by the uniform ellipticity of 4, that a(u, v) is coercive on V; that is, there
exists a constant ¢ > 0 such that

2

(1.10) a(u,u) = c ”u v, for all ueV.

Now suppose that i (referred to as the obstacle) is a given function in HY(Q)
such that ¥ £ 0 on 9,Q (in the sense defined earlier).
Let us set

(1.11) K={ueV;uzyin Q} ={ueV; u—y 20 in Q}.
1t is clear that K is a closed convex subset of V.
Let T € V’ be given. We shall be concerned with the variational inequality

(1.12) ueK; alu,v —u) = {T,v —u), for all vek,

where ¢, denotes the pairing between ¥V and V.
Since the bilinear form a(u, v) is continuous (in the sense that it satisfies (1.9)) and
coercive, it follows by a well-known result on existence of solutions of variational



Vol. 13, 1972 A VARIATIONAL INEQUALITY 193

inequalities (see, for instance, Lions and Stampacchia [11]), that there exists a
unique solution u € K of the variational inequality (1.12).

For the sake of simplicity all the calculations will be carried out assuming that
n > 2. However, all the results hold also for n = 2 with minor changes.

We note that, when 0,Q is Lipschitz, the functionals of the form

(1.13) (T,v)=f (fov+fjvxj)dx+f

gvda, for all veV,
a,Q

belong to V' provided that

(1.14) {foEL"(Q), r22nl(n+2); f,-eL”(Q), p=2, for j=1,--,n;
geli(0,Q), g=22(n—1)/n

(do denotes the (n — 1)-dimensional volume element on 0,Q). This follows
immediately on applying Holder’s inequality together with the Sobolev inequality
for vin V and the fact that v in ¥ admits a trace on 0,Q which belongs to ’(¢,Q).

Let us remark that when 0,Q does not satisfy (1.4), the coerciveness of a(u, v)
fails and the problem becomes only semi-coercive in the sense of Lions and
Stampacchia, ie., a(v,v) = c” Uy “§ o and ” Dy ”z.n is no longer a norm on
V = H'(Q). A sufficient condition in order that the solution still exist is that

ffodx+f gdo < 0.
Q 320

For details we refer to Lions and Stampacchia [11, § 6].
In th: remaindar of the paper, we shall be interested in the properties of the
solution of the variational inequality (1.12) and in the possibility of regularizing it.

2. Holder continuity of the solution

This section is concerned with first theorems of regularity for solutions of the
variational inequality (1.12). In the first part, we prove certain a priori global
estimates which give the boundedness of the solution. We then derive local a
priori estimates which we use to prove that the solution is Hélder continuous up
to the boundary provided that the functional T on the right hand side of the
variational inequality (1.12) is defined by functions f,, f1, -*-,f, and g belonging to
suitable IP-spaces, and that the obstacle ¥ is in some H"/(Q).

We begin with the global estimates. The method of proof is analogous to that
used in Stampacchia [21], Murthy and Stampacchia [15] and Da Veiga [23] and
so we limit ourselves to indicate only the salient points.
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We assume that 0,Q admits (locally) a Lipschitz representation and that,
besides the previous assumptions, the obstacle i is bounded in Q with ¥ <0 on
0,Q.

Let u be the solution of the variational inequality (1.12) and p = 2.

Let ko = max (maxg, 0). For any real number k = k, let v = min (u, k) which
is clearly in the convex set K. If A(k) denotes the set {x € Q; u(x) > k} then, since
v — u vanishes in Q — A(k), we obtain on substituting this v in the variational
inequality (1.12)

f ajly, Uy, dx §f (fo(u — k) + f;u, )dx +f g(u — k) do.
A(K) A(k)

A(k)nd22
The right hand side here can be estimated from above using Holder’s inequality
together with Sobolev’s inequality. The left hand side can be estimated from below,
first by using the ellipticity of 4 and then on applying Sobolev’s inequality in both
the following forms.
There exists a constant C > 0 such that

[¢]zraSC || Ly, for eV with 1/2* =% —1/n
and
1€ ]soia = C [ C]ys for eV with s =2(n— 1)(n —2)7%.
Setting
uk) = | AW | + [A() N0, Q] 2™

we obtain

p(h) € Ch — k™" p(k)® for all h>k >k,
where

C={|folonat+ Z 1fil7a+ ] g]5ae} >

and '

B=min {(1 -2/p)2*/2, (1-1/s—1/q)s}.
We observe that if p>n and ¢ > n — 1, then > 1. Using an algebraic lemma

which can be found in [21] (for the non-negative function u defined on h > k),
we find that

wlkg +d)=0

where
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d*" < C [u(kg) ™.
This argumsznt proves the following
TaeoreM 2.1.  Ifu e Kis the solution of the variational inequality (1.12) where

Ye L’ (Q) N HY(Q) with ¢y 20 on 0,9,
foe P'3(Q), f€ Q) for j=1,---,n with p>n,
and g e L'(6,Q) with g >n—1,

then we have

+
V() S u(x) S max (maxy,0) + {1fo[Fea + X nf,n,fn+|lglliazn}

almost everywhere in Q.
The same tools can also be used to prove

TueoreM 2.2 If ue K is a solution of the variational inequality with
We HY(Q) NL*Q), foeXXQ), felQ), gell(3,Q) for j=1,--,n with
2<p<nand2n—1)n<qg<n—1, then ue KNI Q) (1/p*=1/p— 1/n),

We now proceed to prove the Holder continuity of the solution u of (1.12) up
to the boundary. The proof is based on a method essentially due to De Giorgi [4]
for uniformly elliptic equations. This was later extended by Ladyzenkaja and
Ural’-tceva [6], Morrey [13] and Stampacchia [19] to uniformly elliptic linear
and non-linear equations and boundary value problems. Further extensions to
degenerate elliptic equations are given by Murthy and Stampacchia [15] and to
some types of variational inequalities by Da Veiga [23].

The method consists essentially of taking, for the test function v in the variational
inequality (1.12), a function obtained by suitably truncating u and then localizing
it.

We assume in the rest of this section that the assumptions A {or A’) and B hold
and that 9,Q admits (locally) a Lipschitz representation. Let

{foeﬂ’”(n), F€lXQ) (j=1,-,n) with p> n;
g el40,Q) with g >n—1.

2.1)

Moreover, the obstacle ¢ is assumed to be in H**(Q) N C° (Q), for some 0 < y <1
and the same p, with ¢ < 0 on 9,Q.

We, first of all, obtain a local a priori estimate for u in the following.

Let uc K be the solution of the variational inequality (1.12) and x,e Q. If
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Xo € 00, then there exists a po(xy) = po > 0 given by the Assumption B.If x,€Q,
there exists a po(x,) > 0 such that I(xg, po(xy)) = Q.

In the following, we distinguish two cases; namely, (i) X,€08,Q and (ii)
Xo €Q U Q. If x,€Q U J,Q we may, without loss of generality, suppose that
po(Xo) = po is such that I(xe,pe) N3, Q= . (We can always assume that
0<py <!

Let p and R be two real numbers such that 0 < p < R < py(x,) and let
{ eCé(I(xo,po)) be a function such that

0={x)=1 i) = { Lin I(xo, p)

0 outside I(x,, R)
L |tx)] S const. (R — p)~".

We also set, eventually reducing p,,

and
2.2)

ko= ko(po) = max(_sup (—¥),0);
(23) Q(x0,p0)

lp = lo(po) = min(_inf (—¥),0)=0.

Q(x0,p0)

For any real number k = 0 we consider the two functions v, v’ € HY(Q) defined by
the relations

(X)) v=u—{2>max (u—y —k,0), v’ =u—{*min (u — ¥ — k,0).

It can now be easily verified that we have
() if xo€d,Q, then ve K forall k = ko and v’ e Kforall 0 S k < I,
(i) if xo€QU,Q, then v,0 € K for any k= 0.

Since x, is fixed, we say in the following that a number k is admissible if the
function v (resp. v’) given by (2.4) belongs to K.

We denote, for any 0 < ¢t < po, by A(k, ?) and B(k, {) the sets defined respectively
by
A(k, ) = {x € Qxo,1); u(x) 2 ¥(x) + k}
(2:3) {B(k, ) = {x € Qxo, ); u(x) SY() + K}
Then we have
~u — y — k) in A(k, R); {— {*(u — ¥ — k) in Bk, R)
v —u=

v-u= { 0 otherwise 0 otherwise.
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If k is admissible, then on substituting the function ve K in the variational
inequality (1.12) and adding the term

f a;; ¥ [0 — ¥ — k)], dx
A(k,R)

to both sides, we find that

fA D= D= )
26 = L(k (= i Y=, + Lol + 2 (= aiglhed) (== )} dx

+ L gl*u — Y — k)do.

(k. R)nd282
The left hand side here can immediately be estimated from below by using the

ellipticity to get
m[ cla-v-ioax s e -
A(k,R) A(k,R)

In order to estimate the right hand side of (2.6), let us assume that
Ak, po) € F(B, (x4, po)) so that tu—y — k)eI**(A(k,R)) and its norm is

majorized by B [{(u — ¥ — )] |2. 40,8y
Moreover, since 0,0 has a (local) Lipschitz representation,

{(u—y — k)e (A(k,R) N 3,Q)
and its norm is again majorized by H [Eu -y — b)), HZ AGR)

Hence, on applying Holder’s inequality to each term on the right side of (2.6),
we obtain the estimate

2| (u — ¥ — k)| 2dx < const. U R)| L u— ¢ — k|2dx
Ak,

'A(k,R)

+ f Lo 2|4, B2 + 2|, |? + |0 |2] dx
A(k,R)

(o
A(k,R) no2Q

where s’ = 2(n — 1) /n.
Since { =1 in Q (x,, p) = I(x,, p) and taking into account (2.2)and Assumption
B, we have thus proved
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TueorReM 2.3 If u € K is a solution of the variational inequality (1.12), then
we have

(@ L(k ,,)l (u — ¢ — k), |*dx < const. {(R —-p) L(k R)I u—y — k|?dx
2 2/n 2 2
* fA(kR)[Ifol IA(k’R)I + E’]LI +|‘ﬁxl ]dx

* Jande! )"
'A(k,R) no:Q

() forallk=ky=0if x,€,Q and

(ii) for all k =0 such that | A(k, po)| < 3| Q(xo, po)| if X0 € QU 0,Q;
(b) The same estimate holds with B(k, p) and B(k,R) in place of A(k,p) and
A(k, R)

(@) for all 0Lk <1, when x,€0,Q and

(i) for all k20 such that | Bk, po) | < 3| Qxo, po) | When x,€QU 2, Q.

Part (b) follows in the same way by taking v’ € K in place of v in the above
proof.

We note that for x, e QU 9,Q either condition (a) (ii) or condition (b) (ii) of
Theorem 2.3 always holds.

We recall two lemmas which will be used to derive a local boundedness estimate
from the above theorem.

LemMma 2.4 Let Q satisfy the Assumption B. Then there exists a constant
co > 0 such that for every ve V, xo€ Q and 0 < p < po(x,), we have

j !v - klzdx < cof valzdx . ]A(k,p)lzl",
A(k p) A(k,p)

|4, < e = b7 |0, [dx

A(k.p)— A(h,p)

where h >k

(i) for every k20 if x,€ 3,Q and

(ii) for every k =0 such that

| Ak, p) | < 3| Q(xo, )|

if xoeQuU 8,Q. Similar inequalities hold with A(k,p) and A(h, p) replaced by
B(k,p) and B(h,p) where 0 <h <k,

@) for all k=0 if x,€0,Q and
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(ii) for all k=0 such that lB(k, p)l = llQ(xo, p)] if xgeQuU d,Q.

LemMma 2.5 Under the same assumptions as in the Lemma 2.4, there exists
a constant ¢y > 0 such that

| A(h, )| 2" < ¢y (h — )2 L(k [o:dx - (| G 0)| = | 40h, )
P
with the same restrictions for k. A similar assertion holds also for B(h, p) and

B(k, p) in place of A(h, p) and A(k, p).

These lemmas are consequences of the fact that if a function v vanishes in a set
E = Q(x,, p) with [E l > %lQ(xo, p), (which is the case here for E = A(kg, p) or
B(kyg, p)), then E € F(B,Q(x,, p)) by Assumption B and so we can write Sobolev’s
inequality. For details of the proof, refer to Stampacchia [19].

For simplicity of writing we set

G(k,R) =££[£?[2|A(k,R)]2/"+ S+ W]} ax

([ Jalas)
A(ksR) 7020

The two lemmas above, together with the theorem 2.3, imply the

@.7)

THEOREM 2.6 Suppose u is a solution of the variational inequality (1.12) and
Q satisfies A (or A’) and B.

(@) If x0€0,Q and 0 < p < R < py(x,) then, for all h> k = ko, we have the
following estimates:

Q) (u — W — h)%dx < const. {(R - p)_zf (u——k)?dx+G(k,R) }
A(hip) A(k.R)
x | Ak, R)[*";

(i) | A(h, p)|" 2" < const. (h—k) =2 {(R —p)? (u—y—k)*dx+G(k, R) } ;

A(k,R)

(iii) | A(h, p)| """ < const. (h —k)’z{(R— p) ~? f (u—y—k)?*dx+G(k, R) }

A(k:R)

x {| 4(k,p)| - | ACh,p) [}

(b) The same estimates hold also for x,eQuU 0,Q and for all h>k =0
provided that

| Ak, po) | £ 3] Q(xo, po) |-
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(¢) Similar estimates hold with B(h,p) and B(k,R) in place of A(h,p) and
A(k,R) if
(@) x,€0,Qand h<kZl,or
(i) xo€QuU 0,Q and 0 = h < k provided that
I B(k, pO) I é 1 I Q(XO, p) I .

Since the data fo,f;, -, f, and g satisfy (2.1) and since y € H?(Q) so that
].px] € [7(Q), we can estimate G(k, R) by Holder’s inequality and we find
G(k, R) < | fopa] A, R)[* =772 4 E (|57 + [ ]3| ACk, R [ 27020

J

(2.8)

+ g ]|2al Ak, Ry N 0,072

where the norms of fy,f,, -, f, and ¥, are taken over Q.

Let r be a real number such that 0 <r/2 < p < R £ 2r < po(x,). Then the
estimates of Theorem 2.6 evidently hold with p replaced by r/2 and R by 2r. If
we now set, for all 0 < p < p, and h =0,

a(h,p) = L(h p)(u — i — h)?%dx,

u(h, p) = | A(h, p)| + [A(h, p) N 2,Q]*",
then an iterative procedure employed by Stampacchia in [19] and the estimate
(2.8) for G(k, R) show that

2.9 wko+dj2,r/2)=0
where d > 0 is any number such that

d?> = const. r"‘f (u — o — ko)2dx
A

(ko,2r)
R T R TR it

2/st _2(1—(n—1)/q)
q,ﬁzﬂr

(2.10) + const. {[ﬂfo

+ [ql
where the constants depend only on Q, n, p, ¢ but are independent of r.
In other words, we have the following estimate for the local boundedness of u-

THEOREM 2.7 Suppose that Q satisfies the assumption A (or A') and B, and
ue K be a solution of the variational inequality with f,,---.f, and g satisfying
2.1).

(@) If x€8,Q and 0 < 2r < py(x,), then there exists a constant C > 0 depen-
ding only on Q, n, p, q but independent of r such that
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(2.11) sup (u—t//)(x)§k0+C:r_"L(k 2)|u—¢—k0]2dx+Gr2“}§

Q(x0sr/2)

where

O<a=min(l—n/p,1—(n—1)/g9) <1 and
(2.12) {

G=[folez + X |5]o+[vli + ]z

(b) The estimate (2.11) remains valid for x,eQuU 0,Q with any ke =0
provided that, for all 0 < p < po(x,),

lA(kOs P)l = ll Q(xo,l)), .
(c) A similar estimate from below holds for infg .y /o) (u — ¥) (x) with 1, in
place of k, if xo€8,Q.
We also observe that, since u =y, we always have

inf (u—~y¥)(x) =0 for x,eQuU 3,Q.

Q(xo0,r/2)
We are now in a position to prove that u is Hélder continuous up to the bound-
ary. For this purpose we define, for x,€Q and 0 < p < po(x,),

Q(xo,p Q(x0,p)

M(p) = sup (u—y)(x), m(p) = inf (u—y) (x)
(2.13) { )

and w(p) = M(p) — m(p).

Since u = ¢ in Q, it follows that M(p) = m(p) = 0 and, moreover, M(p) (and
hence also m(p)) is finite by Theorem 2.1. For an integer N =0 and 0 <2r
< polxo), we set

(2.14) Ky =MQr) =2 ¥ Dp2p), Ly =m@r) + 2"V Da(2r) .

Then Ky is an increasing sequence tending to K, = M(2r) while Ly is decreasing
tending to L, = m(2r). It is clear that K, = Ly, = 3(M(2r) + m(2r)) and Ky 2 0,
Ly=0.

ReMARK. 1. If x,€Q U 0,9Q, then every Ky (resp. every Ly) is admissible for
defining the test function v (resp. v") by (2.4).

REMARK. 2. If x,€0,Q, every Ky = k, = max (SUPg(x.0)(— ¥), 0) [resp. every
Ly £ Iy = min (infg(x,, »(— ¥),0) 2 0] is admissible for defining the test function
v (resp. v') by (2.4). Thus there are three possible cases to be considered.

() There is an integer N, = 0 such that Ky = k, for N = N,.
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(B) There is an integer N, = 0 such that Ly < I, for N = N,.
(y) For every integer N we have |y S Ly S L,=K, <Ky =k,

ReMARK 3. Suppose some Ky (and hence also all the succeeding ones) is
admissible for defining v in the sense that («) holds. Then using Theorem 2.6 (iii),
it is possible to prove that

|A(Ky,2r)[ >0 as Ky— K, = M(2r).

Thus if some Ky is admissible for defining v, then for sufficiently large N we may
assume that

| A(Ky, 2r) | < 3] Q(xo,27)]
and
Cr"| A(Ky,2r)| < 4,

where C is the constant of Theorem 2.7. A similar remark applies also for

B(Ly,2r) if some Ly is admissible for defining v’ in the sense that (8) holds. Then
we are in a position to prove,

THEOREM 2.8 Under the assumptions of the Theorem 2.7, there exist two
constants 0<n<1 and H>0 (H depending only on the norms of
JosS1s > fur 9,1, p, q but independent of r) such that

o(r[2) £ nw(dr) + Hr*
(O<a<1 is defined by o =min(l —n/p, 1 — (@ —1)/q)).

ProOOF. Let x,€Q U 0,Q and suppose that some Ky is admissible for defining
v. Then by Remarks 1. and 3. above, there is an integer N, such that, for N = N,
we have

| A(Ky,2r)| < 3| Q(x0,2r)| and Cr~"| A(Ky,2r)| < %.
We can then apply Theorem 2.7 (a) with k, replaced by Ky and we find
M(r[2) £ Ky+ CH[(MQ2r) — Ky)*r~"| A(Ky,20) | + Gr*]*
< Ky + 1 (MQr) — Ky) + CtGH*
= MQr) -2~ Du(2r) + Ct6H

Now since m(r[2) = m(2r), we get
o(r[2) £ (1 =27 M Nw(2r) + $G*r7,

which proves the assertion in this case.
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Now let x € 3,Q. In case («) of Remark 2., the above proof again works.
Consider case () of Remark 2. Then, for all N > N,, we have

| B(Ly,2r) | £ 3]Q(x0,2r)| and Cr="| B(Ly,2r)| <}
and we can apply Theorem 2.7 (c) to obtain, as before,

(Ly,2r)
> Ly —4(Ly — m(2r)) — C*G*r*

because

crn f (u—¥ — Ly)*dx S CHr~"(Ly — m(2r))?|B(Ly,27)|
B(Ly 2r)

IA

B (Ly — m(2r))%.
From this, exactly as above, we have
m(r/2) = Ly—1%x2""*Dy(2r) — 1 GH2
= m(2r) + 2"V Du(2r) — 1 G2
Since M(r/2) £ M(2r), we thus get
o(r[2) = M(r/2) = m(r/2) £ 02r)(1 = 2" P) + 1 G4

which again proves the required assertion.

If xoeQ U 8,Q and some Ly is admissible for the definition of v/, the same
arguments apply.

Finally in case (y) of Remark 2, we have

I, <Ly< Ky<k, for all N.
Hence, letting N — 400, we find that
lo EMQ@r)< kg and 1, £ m(2r) £k,
and hence
Iy — ko £ w(2r) L ko — I,

Since ko—1, = Squxo,zr)(—‘//)—infﬁ(xo,zr)(—llf) = — infgo 20V + SUPG(x0,2r) ¥
= 0SCqy(xo,2r)¥/>» W€ have

(r) = O(osc V).

Q(xo0,2r)

This completes the proof of the theorem.
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Now by a standard technique it follows that there exist constants C > 0 and
0<A<1 (A< such that

o(r) £ Cr* for all 0 < r < py(x).

This leads us to the principal result of this section which can be obtained by
covering Q with a finite number of sets of the form Q(x,, po(x,)) satisfying our

requirements.

THEOREM 2.9 Let Q satisfy the Assumptions A (or A') and B. Suppose
a;€ L°(Q) and a(u,v) be V-coercive. If YyeH"?(Q)NC™(Q), f,eP*(Q),
fieQ), j=1,---,n and gel!(0,Q), with p>n and q>n—1, then any
solution u e K of the variational inequality (1.12) belongs to V N\ C>*(Q) where
0 <A< 1 depends only on Q,0Q,n,p,q and y.

3. Further regularity

In this section, we show that the solution of the variational inequality (1.12)
with f; =0 for j =1,---,n can be approximated in C¥"(Q) NV by solutions of
certain quasi-linear mixed boundary value problems associated with the elliptic
operator A. The techniques used are very similar to those used in [7].

The approximation procedure permits us to obtain further regularity of the
solution of the variational inequality using the corresponding regularity for
solutions of the mixed problems. The existence and regularity results for mixed
boundary problems have been considered by several authors and one can refer
to the articles of Peetre [16] and Shamir [17] for a detailed bibliography.

We begin by recalling some known facts concerning mixed boundary value
problems for the linear elliptic operator A. Then we obtain an existence theorem
for a quasi-linear mixed boundary value problem related to our variational
inequality by using the standard method of monotone operators.

We always suppose that the Assumption A (or A’) holds and so a(u,v) is
V-coercive.

Assume that 9,Q has a locally Lipschitz representation so that every element u
in ¥ has a trace on 0,Q which belongs to L(6,Q) (s = 2(n — 1) /(n — 2)). Given
two functions fe L(Q) (see (1.14)) and ge L'(0,Q) (1 /s + 1 /s’ = 1) we consider
the problem of finding a solution

3.1 ueV; a(u,v) =f Sfudx +f gvda, for all veV.
Q

920
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We have already seen that the right hand side of (3.1) defines a continuous linear
functional on V and hence, by the V-coerciveness of the bilinear form a(u,v),
there exists a unique solution u € V of (3.1) (by the Lax-Milgram lemma).

A solution u € V of problem (3.1) can be interpreted as a “‘generalized’” solution
of the mixed boundary value problem (see Section 4).
3.2 Au=fin Q; u=0 on 0,Q, (Oujdv)=g on 9,Q.

REMARK. Under the Assumptions A (or A’) and B, it is shown in Stampacchia
[19] (see also, Murthy and Stampacchia [15]) that the solution u € ¥ of the mixed
boundary value problem (3.1) is Holder continuous up to the boundary provided
that fe IP(Q) with p > n/2, geL'(0,Q) with ¢ > n — 1, and that there exists a
constant C > 0 and a number 0 < 4 < 1 such that

(33) [uly+]u]corm = Cl|foa+ |9 ]onl

We shall now consider a non-linear mixed boundary value problem.

Let fe IX(Q) with p> n/2 and g € I%(0,Q) with g > n — 1 be given. We shall
make the following assumptions on the obstacle y € H'(Q) with ¥y <0 on 0,Q
and on the coefficients of A.

Assumption C. 1In the sense of distributions, Ay is a measure on Q and
&y [ov is a measure on 0,Q such that

max (Ay — £,0) e (), p > n/2; max ((Oy [0v) — g,0)e L}(0,Q),qg > n — 1.
The interior conormal 0y /0v is understood in the generalized sense. It is clear
that, if the coefficients of A are in C(Q) and y € C*Q) with y <0 on 9,0, the
Assumption C is satisfied.

We also note that, since n =2, p>2n/(n+2) and q > s’.

Let 6(f) be a non-increasing Lipschitz function on the real line R such that
0 = 6(r) £ 1. Consider the non-linear mixed boundary value problem
(3.4) Au=max(Ay — f,000u — ) + fin Q,

' u =0on 3,Q, du [dv = max ((6Y [ov) — g,0)0(u — ) + g on 8,Q.
The variational formulation of the mixed problem (3.4) can be defined by
means of the quasi-linear form

by(u,v) = alu,v) —L max (Ay — £,000(u — ) vdx

- f max (0 [0v) — g,0)6(u — ) vdo, for u,veV.

The quasi-linear form b,(u, v) defines a non-linear operator B= B, on V given by
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(3.6) by(u,v) = (Bu,v), for u,veV.

The operator B is strictly monotone and continuous from V into ¥’. The strict
monotonicity depends on the facts that a(u,v) is V-coercive and that 0 is non-
increasing so that

[0(u—y)— 0w —y)](u—0v)<0 for all u,veV.

The continuity of B is a consequence of the continuity of the bilinear form a(u, v)

on ¥V and of an easy estimate of the two terms involving the integrals in (3.5)

obtained by applying Hélder’s inequality together with Sobolev’s inequalities.
Moreover the quasi-linear form b,(u,v) is coercive in the sense that

bo(u,u) /| u |y > + o0 as |u, > +o0.
We now observe that the problem (3.4) is equivalent to the problem of finding a

solution of

3.7 - ueV; bylu,v) = f Sfodx +f gvdo, for all veV.
[¢]

9202

In view of this reduction, the general theory of monotone operators yields the
following existence theorem.

TrEOREM 3.1 Suppose Q satisfies Assumption A (or A’) and 0,Q is locally
Lipschitz. If fe I’(Q) with p > 2n [(n + 2) and g € L{(0,Q) with q > s"= 2(n — 1)/n,
and ¢ and the coefficients of A satisfy Assumption C, then there exists a unique
solution ueV of the non-linear mixed boundary value problem (3.4),

As another consequence of the above reduction of the problem (3.4), we can
derive, from estimate (3.3) of the Remark and the fact that 0 < 6(r) <1, the
following

TueoreM 3.2 If Assumptions A (or A"), B and C hold with p>n/2 and
q > n — 1, then the solution u of the non-linear mixed problem (3.4) belongs to
C*¥Q) NV and we have

Jully + |4 ]co4@ < const. {| max(4¥ —£,0) [0+ [/],a
(3.8) + || max((®¥ /8v) — 9,0) |00 + || 9 020}

where the constant is independent of the function 6(z).
Hereafter we shall only be concerned with the variational inequality

39 uck; alu,v —u) gf fv—u)dx +f g(v—u)do for all ve K
Q a

20
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where fe IP(Q) and g € L'(0,Q) with p>n/2, g>(n —1).

We shall show that the solution of the variational inequality (3.9) can be
approximated from above as well as below by solutions of the mixed problems
of the type (3.4) corresponding to sequences of functions 0(¢) as described above.
For similar results, see [7]. In the rest of this section, we shall use the notation

(3.10) P(Y,f) = max(4y — £,0) in Q, Q(J,g) = max((dy [ov)—g,0) on 8,Q.
We consider two sequences of functions of the type 6(t) defined as follows:
1, for t2—-1/m
3.1 0= < —mt, for —1/m<t£0

0, for 20

and
1, for t<0

(3.12) O ) = < — mt+1, for 0Zt<1/m
0, for t=1/m.

Then 6,(t) is a non-decreasing sequence of functions each of which is Lipschitz
and non-increasing while 6,(t) is a non-increasing sequence of functions with
the same properties. Both the sequences ““‘converge” as m — oo to the multi-valued
function 6(f) defined by

1 , in t<0
(3.13) )= <[0,1], at t=0

0 , in >0,

Notice that they satisfy the following properties.

(1) 0.0 = 6,(t—1/m),

2 0, — 6,(r)s0,fort—1>1/m,

3 o.(x) - 0H=0,fort<t.
Relations (2) and (3) are immediate consequences of (1).

Let us denote by u,, and u,,, respectively, the solutions of the non-linear mixed
boundary value problems defined by 0,, and 8, That is, denoting the quasi-linear

form by(u, v) corresponding to § = 6,, and 6,, respectively by b,(u, v) and b (u,v),
we have
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3.149 u,€V; b, (u,,v) =f Sfodx +f gvde, for all veV,
Q

2,0

(3.15) u,€V; by(u,,v) = ffvdx +f gvdo, for all ve V.
0

02Q

We know by Theorem (3.2) that ul,, ul, e V N C*X Q). Then we have the fol-
lowing two propositions.

PropoSITION 3.3 The sequence u,, satisfying (3.14) (resp. u,, satisfying (3.15))
is non-decreasing (resp. non-increasing).

Proor. If m; < m,, then from (3.14) we obtain

A, — ) = f PN [, ) ~ 0, o

+ [ 0[O0 = ) = O, — )]0
229
Here we can write
O (thry, — ) — Ony (s, — ) = 0,,(u,, — ¥) — 6, (47, — V)
+ Oy, — W) — O (U, — W)
= 0y (s, — W) — 0, (U, — W)

since 6,,(8) = 0,,,(¢) for all ¢ because m, > m,. The same holds also in the boundary
integral on 0,Q above. The function

v = min (u,,, — u,,,,0)

vanishes on the (relatively closed) subset E of Q where Uy, = u,,, and as
9,Q < E, it follows that v belongs to V. Since v < 0 everywhere in Q and since, on
the subset Q — E, we have

Oty — ) — O, (1, — ) 2 0,
the above inequality implies that
(O (i, — ¥) — Oy, (U, — ¥)J0 2 0.
Substituting this v e V, we see that

a(v,v) = a(u,, = Up,,v)

[, PO =9 = 0, — ]

il

Q

+ J 0, 9) [0, (tt, = ¥) = Op, (i, — Y)] vdo 0.

29Q~-E
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Then by the cosrcitivity of a(u, v), it follows that v is a constant in Q. But v =0
on 8,Q. Hence by the connectedness of Q, we see that v = 0 in Q. In particular,
u,,, = u, on the subset where u,, < u,, which is absurd. Hence u,,, = u,, in Q
for my, > m;.

The proof of the assertion that {u},} is non-increasing is completely analogous
and if u},,>uj, atsome point of Q, it is enough to take for v the function » =
max (uy, — u,,,0) €V for m; <m,.

This completes the proof.

The same method also yields the

ProPOSITION 3.4 The sequences {u,,} and {u,} respectively defined by (3.14)
and (3.15) satisfy
(3.16) 0=Zu, —u, <1/m, for each m.

Proor. We have, for any veV,
ot = ) = || PO 1000~ ) = 045 = )i

; f QW) 3 — ) Ot~ )] o

Since u,, and u,, are continuous, if u,, < u,, at some point of Q U 4,Q then there
exists a relatively open subset w of Q where u’(x) < u,(x). Let v = min (u), — u/,,0).
Then as before veV, v <0 and v =90 in QU 3,0 — » so that

a(o,0) = f POJ ) TOLEs — ) — O1uts — )] Gl —

+ f QT — ) — 0, ~ W — ) o

By the property (3) of the functions 6,, and g, we have
O(up — ) — 6, (uy, — ) 2 0 since u,, < u, on w.

Therefore a(v, v) < 0 and, by the coercivity, v is a constant in Q. Since v = 0 on &
it follows by the connectedness of §, as in the above proof, that v = 0 everywhere;

"

that is, u,, = u,, on  which is absurd thus proving u], = u,, for each m.

The proof of the assertion that u,, — u, < 1/m is quite similar. It is enough to
take v = max (u,, — u,, — 1/m,0)eV if u,, — u,, > 1/m at some point and hence
in some open subset of Q as before, and to use the property (1) of the functions

6, and 6,,. This completes the proof of the proposition.
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In view of Theorem (3.2), the two sequences {u,.}, {u,} form bounded sets in
VN C%*(Q) and hence, in particular, have weakly convergent subsequences in

¥ 0 C%4(Q). On the other hand, it follows by the above two pro positions that
the sequences tend (weakly) to a common limit u in ¥ N C**(Q).

Thus ue V N C*4(Q).

It remains to prove that u is the unique solution of the variational inequality
(3.9).

For this purpose we consider the mixed boundary value problem (3.4) with
6 = 0/, defined by (3.11) and we denote the corresponding unique solution (whose
existence is assured by Theorem (3.1)) by u,,. Then we have

THEOREM 3.5 If the Assumptions A (or A’), B and C hold, then the solution
u’ of the mixed problem (3.14) satisfies u, 2 Y — 1/m.

Proor. Suppose, if possible, u,(x) < ¥(x) — 1/m at some point x e Q U 3,Q.
Then under the assumptions made, u_, belongs to C®*Q) NV by Theorem (3.2).
Hence there exists a non-empty open subset w of Q U 0,Q where u, <y — 1 /m.
Then the function

v=min(u,’n—|p+1/m’0)={um*lﬁ+1/m in o

0 in QUL —w

belongs to V since on 9,Q we have u,, = 0 and § < 0. Substituting v in the equation

b, (u,, v) =J‘ Sfvdx +J gvdo,
o 2.0
we obtain

At V) =j Q[P(lﬁ,f )0t = W) + f Jodx +j . [0W, 9)0r(um—) + g]vdo .

®nNd QL4

On the other hand, we also have

(AY)vdx +J Oy [ov)vdo

!\329

»

ay,v) = J

[ 2ot

and so, on subtraction,

a(u:n - ll’? v) = J‘

(7]

Q[P W, )0, (tp — ) + f — AP vdx

+J [OW, 9)0n(um — ¥) + g — (8 V)] vdo.

ﬁazﬂ
Since u, -y <—1/m in w and 6,()=1 in t< —1/m, it follows that
a(u,, — ,v) £ 0, that is, a(v,v) £ 0. Hence by the V-coercitivity of the bilinear
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form a(u, v), we find that v = constant on w. But, since v = 0 at least at one point
of @, it follows that v =0 in w by the connectedness of Q. This means that
u, =y —1/m in o which contradicts our assumption. Hence u, >y — 1/m
everywhere in Q, which proves the required assertion.

On the other hand, we have already seen that u,, form a bounded set in
v N C**Q) (by Theorem (3.2)). Hence, by weak compactness, a subsequence,
again denoted by u,,, converges weakly in V' N CO'A(Q) and, moreover, uniformly
to u. This means that u = ¥ in Q, that is, ue K.

We are now in a position to prove the first main result of this section.

THEOREM 3.6 If the Assumptions A (or A"), B and C are satisfied, then u is a
solution of the variational inequality (3.9).

Proor. We have already shown above that ue K. If ve K, then v —u eV
for each m (in the subsequence). Since the quasi-linear form b,,(u, v) (corresponding
to the function 6, is monotone and (hemi-) continuous it follows, on applying
Minty’s lemma (see for instance [22]), that

bu(v,0 — up) Z by, v — uy)

al o — 1) f PN~ D6 - ) dx
- J O = V)~ 1)

f fo —up)dx +J- g(v — up)do.
Q 220

Since ve K implies that v — = 0 so that 6,,(v — ) =0, we have
P, f)0,(v —¥) =0 in Q, 0(),9)0,(v ~—¥) =0 on &,Q,
and hence
a(v,v — u,) = b,(v,v —u,) for ve K.

We thus obtain the inequality

a(v,v — u,,) gj f(v — u,)dx +J g(v — u,)do.
Q 22Q

Here since u,, — u weakly in V, we can pass to the limits on both sides and we find
that

a(v,v — u) gf f(v—wdx +I g(v — u)do.
Q [2p1¢]
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In order to complete the proof of the theorem, it is sufficient to apply the lemma
of Minty to the bilinear form a(u, v) to conclude from the above inequality that

a(u,v — u) ;f flv —u)dx +J

g(v — uw)do, for all ve K.
8:Q

Theorems (3.5) and (3.6) provide a method of obtaining certain regularity
results for the solution of the variational inequality (3.9) from the corresponding
results for solutions of linear mixed boundary value problems. We examine some
of these cases in the following.

Consider for any FeI’(Q) with p > n/2 and G e L(0,Q) with g >n — 1 the
mixed boundary value problem

3.17) weV; a(w,v) =f Fodx +f Guda, for all veV.
Q

2202

It is known that the regularity of the solution w near a point x in Q varies
according as whether the point x under consideration belongs to one of the
following sets: L

(@ QU (B 0,Q (1 0,2N0,Q.

We make the following hypotheses which require suitable smoothness conditions
on the domain Q (respectively, subdomains of Q) and the coefficients of the
operator A. In fact, we shall implicitly assume that the boundary 6Q and the
coefficients aj, of the operator are sufficiently smooth in order that the a priori
estimates that we recall below are valid for w.

In order to state these a priori estimates, we shall require the fractionary Sobolev
spaces W*P(Q) and W"?(0,Q) for any real s. For details concerning the defi-
nitions and properties of these spaces, we refer to the paper of Lions and Magenes
[9] or to the paper of Shamir [17]. We shall denote the norm in the space
w?@) by | [pa:

Further, in view of the imbedding theorem for fractionary Sobolev spaces, we
know that (when 8,Q is smooth) for 0 <s <1, W*(3,Q) < L(3,Q) where
(1/r)=(1/D)—s/(n —1) and the inclusion mapping is continuous. Then by
duality, the functions in L"(0,Q) ((1/r) + (1/r') =1) define continuous linear
functionals on W*(,Q), that is, define elements of W"”'(aZQ), a/hH+an =1

We shall consider the subdomains Q’, Q" of Q which are of the form Q'
=QNB, O=0nNB" where B’ and B” are open balls in R” with centre at x
such that B'< B".
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Starting with case () that xe Q U 0,Q by taking Q" such that Q"< QU 4,9,
we have the estimate

619 [ s+ 1wy  const. (] F e+ e}

The a priori estimate (3.18) is a consequence of the results due to Agmon,
Douglis and Nirenberg [1] on elliptic boundary value problems.

In case (B), that is, for x € ,Q, by taking Q" such that Q" = QU 3,Q we have
the estimate

619 [ 8] 1scmport | Wl S const ([ F e+ | G luaensn® | #]oah

where ¢ < max (p,n — 1).

The estimate (3.19) is a consequence of the results of Lions and Magenes [9]
on inhomogeneous boundary value problems.

In the remaining case (y) where x € 9,Q N 8,9, we have the following estimate
from the results of Shamir [17].

20 [wlpar + [l S const ([ Flp+ 6 s + | e

where

(i) s=1forl<p<4,
@) s<®@)+(Q/p)forany p>4

and g = p(n — 1) /n so that p > n implies that g > n — 1.

We remark that in [17] an estimate of the type (3.20) is proved with
” G H_”p‘,,_ﬁu,,aﬂ instead of ” G ”q,,—,»,,azﬂ as stated here. However, making use of
the remark made earlier about the fractionary Sobolev spaces, we can deduce
(3.20) from the a priori estimate of Shamir in [17].

Assume that the domain Q satisfies Assumptions A (or A’) and B. Let fe I7(Q)
with p > n/2 and g € I*(0,Q) with ¢ > n — 1 be given. Suppose that the obstacle
¥ and the cosfficients of A satisfy the Assumption C.

In order to derive the regularity of the solution of the variational inequality
from the above estimates, we consider the sequence of Lipschitz functions 6,
defined by (3.11) and denote by u,, the solution of the corresponding non-linear
mixed problem (3.14)

b (u, v) =J Sfvdx +J gvdo, for all veV.
Q 8252

Then u,,e W*(Q')NV for appropriate s,p,q according as the estimate
(3.18), (3.19) or (3.20) holds and satisfies the following estimate.
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“ U HV + ” Up ”s,p,n’ é C(Q’: Q;’P: q) {H P('//’f) ||IJ.Q” + ”f"p Q
+ ” Uy ”p,ﬂ” + “ Q(lnba g) llq 2 a¥ s + ” g ”q,azﬂnﬁ”}'

On the other hand we know that | u,, | ,o- can be estimated by the other terms on
the right side (see Murthy and Stampacchia [15]). From (3.18), (3.19) and (3.20),
we conclude that u,, forms a bounded sequence in W*?(Q') N V for the appropriate
s, p. So, by the weak relative compactness (of bounded sets), a subsequence, again
denoted by u,, converges weakly to a limit # in W*?(Q')NV. But, by Theorems
(3.5) and (3.6), this limit u is the solution of the variational inequality (3.9). Thus
we have proved the following main result on the regularity of the solution of the
variational inequality.

THEOREM 3.7 Let Q satisfy the Assumptions A (or A’) and B. Suppose given
feI’(Q) with p>n/2 and gecI¥d,Q) with q>n — 1 and suppose that the
obstacle Y and the coefficients of A satisfv Assumption C. If ue K is the solu-
tion of the variational inequality (3.9) and if xeQuU 0,Q (resp. x€0d,Q,
x€8,Q N3,Q), then ue H**(Q') NV (resp. W TPPQYy NV, WH(Q) N V).

As a consequence of the fact that we have assumed that the coefficients of the
operator A and the domain Q (resp. subdomains of Q) are suitably smooth,
Theorem 3.7 yields, in view of the Sobolev inequalities, the following

CoROLLARY 3.8 The solution u € K of the variational inequality (3.9) belongs to
CY™(K) for any compact subset K of Q such that K <« QU 0,Q with p = 1—(n/p).
Moreover, Theorem 2.9 can be strenghthened for p=q=co, in the sense that u
is in C>*(K) with 0 < A < } for any compact subset K of Q while A is any number
less than 1 provided, in addition, that K N5,Q N8,Q = &.

4. Interpretation of the boundary data and some remarks

In the first part of this section, we give an interpretation of the boundary
conditions formally imposed by the variational inequality (3.9). In the rest of the
section, w2 make a few remarks concerning extensions and generalizations of our
results of the previous sections.

I. We recall that the sequence of Lipschitz functions 8, defined by (3.11)
*‘converge’’ to the multi-valued function § defined by (3.13). On the other hand,
under Assumptions A (or A’), B and C, Theorems (3.5) and (3.6) show that the
solutions u,, (a subsequence of u,) of the non-linear mixed boundary value prob-
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lems converge in ¥ N C”X(Q) to the solution of the variational inequality (3.9).
Thus the variational inequality (3.9) can be formally described as follows:

Au — fe max (AYy—£,0) 0 (u— ) in Q,
@.1) {u =0 on 8,Q, du /dv — g € max (3¢ /v) — g,0)8(u — ) on 3,Q.

We observe that if o is an open subset of Q where u > , then f(u — ) = 0 and
so u is a solution of the linear mixed boundary value problem

Au = fin 0 N Q (in the sense of distributions),
4.2) {

u=00nwNJoQ, duldv=gonwNaiQ.

In order to interpret problem (3.1), we find, on taking v e C§ (Q), that Au=fin Q
(in the sense of distributions). Let D(A4) denote the subspace of V consisting of all
u € V such that Au, taken in the sense of distributions, belong to I2(Q). (We note
that if the cozfficients of A are functions in C'(Q), then C*(Q) NV is dense in
D(A4)).

If 9,Q is of class C!, then it admits a continuously varying tangent space at
each of its points and a continuous normal vector field v, oriented towards the
interior of Q. Then, for any ue C'(Q) N D(4), we obtain by applying Green’s
formula

4.3) f (Au)vdx = a(u,v) —f —6—uvd0'
o aq OV
where
u
4.4 e a; (x)v(uy,.

H:re v, (k=1,---,n) denote the direction cosines of the interior normal v(x) at x
on 3,Q. du [dv is called the co-normal derivative of u with respect to the operator A.
Thus we see that if u € C}(Q) N D(A), then

4.5 a(u,v) =J Sfodx +f (0u [dv)vda, for all veV.
Q 20

Now suppose that u €V is arbitrary and 0,Q is locally Lipschitz. Then du /dv
can still be defined in a generalized sense as follows.

Let V(0,Q) = V|V, (V, being the space of all functions v in ¥ having its trace
on 3,Q zero) be provided with the quotient norm. Then the mapping which
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associates to every v e Vits trace vl 3,Q is continuous linear from V onto V(3,9).
On the other hand, the mapping L defined by
Lv = {(Au,v> — a(u,v)

defines a continuous linear functional on V which is zero on V, and hence defines a
continuous linear functional on the quotient space V(3,Q). In other words, there
exists a unique element G(u) e [V(3,Q)]’, the dual space of V(0,Q), such that

(4.6) (G(u),v) = {Au, v} — a(u,v).

This can be considered as an extension of Green’s formula (4.5) above. By defi-
nition we set

@7 (0u [0v) = G(u) on 0,Q.

According to what we said at the beginning, we know that V(0,Q) = L'(6,Q)
and the inclusion mapping is continuous so that every geL (8,Q) defines a
continuous linear functional on V(8,9). Moreover, we can then write

{G(u), v> =j gvdo.
0,2

That is,
4.8) (0u [0v) = g on 3,Q in a ‘‘generalized sense’’.
A d:tailed account of thase facts can be found, for instance, in the book of
LlOl‘lS and Magenes [10] or in the article of Magenes and Stampacchia [12].
These considerations lead us to the following formal interpretation of the
boundary conditions.
1) If there exists an open subset E, of 8,Q where u > s, then du [v = g on E;.
2) If u =y and g — &y /dv is a positive measure on a subset E, of 9,Q, then
again dufdv=g on E,.
3) If u = and Oy Jdv — g is a positive measure on a subset E; of 0,Q then,
since 0 < 8(¢) <1, we have

gZoujov=Z Y /dv on Ej.

These inequalities are to be understood in a generalized sense. In order to make
these more precise, we note that the notion ““v = 0 on a subset E of Q”* for functions
veV induces a notion of positivity on ¥(8,Q) which is the quotient space V/V,.
We recall that V(9,Q) is precisely the space of traces on 9,Q of elements of V.
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Then for elements G in the dual space [V(3,Q)]’, we define positivity in a natural
way as follows: For G e [V(3,02)]" and for a subset E of 9,Q we say that “G = 0
on E” if G(v) = 0 for all v € V(0,Q) such that *“v =0 on E™.

An analogous definition can also be given to the elements of [H'(0,Q)]’
= (HYQ)/V,)’. We also observe that as V(3,Q) = H'(9,Q) with continuous
inclusion, the elements of [ H'(9,Q)]’ define elements of [ V(6,Q)]’ (by composition
with this inclusion) and we identify these functionals.

In view of this, the inequalities in (3) above are to be taken in the sense of
functionals in [V(2,9Q)]’, namely,

(Oujov) — g =0 and (0 /dv) — (0u/6v) =0 on E,

as elements of [V(3,Q)]".

Since [V(0,Q)] is a normal space of distributions on 0,Q we see, by a well
known theorem of Riesz-Schwartz, that the above inequalities can also be un-
derstood in the sense of measures on 0,Q; that is, (Gu /0v) — g and (O /dv) — (Ou/dv)

are positive measures on E;.

II. The solution u of the variational inequality (3.9) can also be obtained by
another approximation procedure of potential theoretic nature. Again here we
essentially follow the treatment of Lewy and Stampacchia in [7].

Suppose u € K is the solution of the variational inequality (3.9). Let K, denote
the cone of all we V' which can be written in the form w = #(u — v) for some
veK and ¢t > 0, and K, be its closure in V. Then it is clear that

(4.9) a(u, w) gj fwdx +J gwdo, for all we K,.
Q 820

We next observe that the positive cone {we V;w = 0in ﬁ} is contained in K, and
in particular, (4.9) is satisfied. These considerations lead us to introduce, in
analogy with the case of the Dirichlet problem (that is, 6,Q = dQ), the following

DEerFINITION. A distribution w € H!(Q) is said to be a super solution with respect
to V,A,fand g if
a(w, ¢) ;J fédx + J géda, for all ¢ e CY(Q) with ¢ = 0 on 3,Q
Q 520 _
(4.1p) and ¢ =2 0in Q.

Evidently in this definition, we can also take ¢ & V with ¢ =0 in Q.
We have
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THEOREM 4.1 If u€ K is the solution of the variational inequality (3.9) and
W denotes the set of all super-solutions with respect to V, A, f and g such that

“.11) w=0on 0,Q and w=y in Q
then
4.12) u =min{w; we W},

ProOOF. Let we W be arbitrary and let v = min(u, w). Then ve K because of
(4.11) and we shall show that v = u. Substituting v in the variational inequality
we get

82Q

a(u,v — u) gj f(v—u)dx +J‘ g(v — u)do.
Q
Since w is a super solution and v —ueV withv —u <0 in Q, we have
alw,v — u) gj fo— u)dx +J g{v — u)de.
Q

82Q

We can write the left hand side as

a(w, v— u) = (f +J )aj,‘ka(v - u)xjdx
w=w) (u>w)

where we have

v —u =0and v, = u, on the set {x e Q; u(x) = w(x)}

and v =w and v, = w, on the set {xeQ; u(x) > w(x)}. Hence the first integral
vanishes and

(4.13) a(v,v —u) = a(w,v — u) §f f(o—uwdx + [
Q v

g(v — u)do.
22Q
The inequalities (3.9) and (4.13) together imply that a(v — u, v — u) < 0 which by
V-coercivity of the bilinear form implies that v — u is a constant in Q. As in the
proof of Theorem (3.5), the connectedness of Q shows that v = u which proves

the required assertion.

REMARK. Since any ¢ € V such that ¢ = 0 in Q can always be written as v — u
with ve K, we see that the solution u € K of the variational inequality (3.9) is
itself a super solution with respect to ¥, 4, f and g.

As a consequence of Theorem (4.1), we obtain
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CoROLLARY 4.2 Let i,r, be two obstacles such that ¢, =y, and Y; <0 on
0,Q. If uy,u, are the two solutions of the variational inequality (4.10) corre-
sponding to the convex sets

4.14) K;={veV; o2y}, (j=12),
then u, = u,.

In fact, let W; denote the two sets of super solutions with respect to V, F and A

corresponding to ¥,(j = 1,2). Then W, = W, and by Theorem 4.1 we have
u, = minw < min w = uy,
weWs weW1

which proves the assertion.

In conclusion we shall only mention that exactly as in Lewy and Stampacchia
[8], one can prove the following assertions.

a) Let ¢; be two (smooth) obstacles as in Corollary 4.2 and u; € K; be the
corresponding solutions of the variational inequality (3.9) (j =1,2). If there
exists a point x, € Q where ¥,(x,) > 0, then sup (u, — u,) lies on the set

{x eQ; u,(x) = Y1)}

b) If ¥; and u; € K; are as above, then

0fu —u, = SBP(‘/’1 — ).
o]

c) If y, and ¥, are two smooth obstacles such that ; <0 on 8,Q and u;e K,
the corresponding solutions of the variational inequality, then

,u1—u2| s S_{‘;Pl‘/’r“ﬁzl-

The following are some extensions of our results.
(a) Inhomogeneous data on 0,Q. Let u, and ¥ be two functions belonging to

HY(Q) such that ¥ < 0 on 3,Q. Consider the closed convex set K, in HY(Q) defined
by

(4.15) Ko = {ve HY(Q); v—ugeV and v —u, = in Q}.

(K, is contained in the hyper-plane V + u, in H*(Q)). Then all our results can be
extended to the variational inequality

ueKy; alu,v —u) = fn [folv — u) + f;(v — u),,]dx +L

. g(v — u)do,
(4.16)

2
for all ve K,,
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with almost no change in the proofs by considering the convex set K = K, + u,.
The variational inequality (4.16) formally corresponds to the mixed boundary

value problem
Aw = fo —(f}),, in Q (in the sense of distributions)

@.17) {
w=ug on 0,Q, Ow /0y =g on J,Q.

(b) Operators with lower order terms. Consider a uniformly elliptic operator
of the form
(4.18) Au = — (apu,, +du),, + bu,, +cu

where
() a;eLlQ), b, d;eL*%Q) and ce L'**%Q) for some & > 0;

(i) there exist positive constants m, M such that

m| EPSané S M|¢&|?, ae. in Q and for all £eR" — {0};

(4.19)

(iii) ¢c—(d)),, 2¢co>0 on Q in the sense of distributions (¢, 2 constant).

We define the associated bilinear form by
(4.20) a(u,v) =J‘ [(apuy, + duv,, + (bju,, + cu)v]dx
Q

and assume that a(u,v) is V-coercive. Let ¥ € H}(Q) with ¥ <0 on 0,Q and
K = {veV;v =y in Q) be the associated closed convex set of V.

All the results of the previous sections easily extend with minor changes to the
solutions of the variational inequality

uek; a(u,v —u) gJ [folv — u) + fi(v — u),,,Jdx +J

02

g(v — u)do,
Q
for all ve K.

If a(u, v) is only semi-coercive on ¥ (in the sense of Lions and Stampacchia [11]),
it is necessary to make the compatibility assumption that

J‘ Sfodx -l—j gdo < 0.
Q 9200

For the techniques we have used in the proof of Holder continuity as applied to
this more general situation, we refer to the paper of Stampacchia [19] (see also
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Murthy and Stampacchia [15]). Clearly the remark (a) on the inhomogeneous
data on 2,Q applies also in this case.

(c) Obstacles defined only on the boundary. Let the domain Q satisfy the
conditions A4 (or A') and B of Section 1. We shall further assume that Q and the
coefficients a; of A are smooth in order that the inhomogeneous Dirichlet problem

4.21) Aw=fin Q, w=w, on 9Q,

that is,

4.21)’ W — Wo eHé(Q), a(w,n) =f fndx, for all ne HY(Q)
Q

is solvable and w e H*?(Q) for any given fe I*(Q) and w, € H*?(Q).

This condition is satisfied, for instance, if 6Q is of class C* and a;, € C*(Q) (see
the paper of Agmon, Douglis and Nirenberg [1]). Under the assumption of
smoothness of Q, the Dirichlet condition can equivalently be assigned in the
appropriate space of distributions on 0Q itself (see the paper of Lions and
Magenes [9]).

Let  be a distribution belonging to W2~ */?"’(3Q) such that ¥ <0 on 4,0,
fe LP(Q) with p > n and let g€ [40,Q) with ¢ >n — 1. Let e H*(Q) be the
(unique) solution of the Dirichlet problem.

(4.22) Af=fin Q, J =y on Q.
Consider the closed convex subsets of V defined by ¥ and V, namely,
(4.23) K={veV;o2yondQ}and K = {veV;v2y in Q).

We observe that i/ satisfies Assumption C of Section 2 and, by Sobolev’s inequality,
¥ belongs to C*(Q), y = 1 — n/p. Then we have the

THEOREM 4.3 Under the above assumptions if u is the solution of the varia-
tional inequality

r r

(4.24) ue K; au,v—u) = flv—uw)dx + g(v — u)doe, for all ve K,
Q

Y, J 29
then u resolves the variational inequality

™

@25 ueK;atu,v—u)={ flo—uwdx + f g(v — u)de, for all ve k.
Q

J J 202

Proor. We note, first of all, that u € K in view of the inclusion K < K. Tt is
therefore enough to show that (4.24) holds for all v € K so that (4.25) is satisfied.
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If ve K is any arbitrary element, then either v = in Q or v <1} at some point
in Q (and hence also in an open subset of Q by the continuity of v — i given by
Theorem (2.9)). In the first case, (4.24) is nothing but (4.25). So we have only to
consider the case in which v < at some point of Q.

In this case, we can write v as a sum v = v; + v, by defining

(4.26) v, = max (v, ) and v, = v — v;.
Then v, € K and v, € V with
0 in {xeQ; vy}
2 = {0—117 in{xeQ;v<y}.

Since v € K by assumption so that v = = on 9, it follows that supp v, Q
and thus v, € HY(Q) = V. We can now write

“.27 a(u,v — u) = a(u,v; — u) + a(u,v,).
We shall show that
(4.28) a(u,v,) = J- Sfu,dx.

o

In fact, by Theorems 3.5 and 3.6, u is the weak limit in ¥V N C®4(Q) of the
sequence (a subsequence) u,, which are solutions of the mixed boundary value
problems

u,eV; alup,n) = J [max (A — £, 0)0,,(u;, — ¥) + fIndx

+ j (max (oY [0v) — g,0)0,,(u,, — ¥) + gndo, forall ye V.
02Q

Here, since Ay = fin Q and since supp v, = Q we find that

a(u,,, v,) =JQ foadx,

which on passage to the limit proves (4.28).
Finally, since u is the solution of (4.24) and since v, € IZ, we find from (4.27) that

a(u,v — u) _Z_J f(v, —wydx +J g(v, — u)de +J Sfv,dx.
Q 229 Q

2
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In view of the fact that supp v, = Q implies that v = v, on 0Q, this inequality
proves the required assertion. The method of proof we have adopted above
follows an idea of Kinderlehrer [5]. The remarks (a) and (b) can easily be extended
to this situation.

Theorem (4.3), in particular, together with our results of Section 2 give the
results of Da Veiga [23] and Brézis [2]. However, the proof of Da Veiga being
direct does not require the smoothness of dQ nor that of the coeflicients as in-
dicated here.
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